Impact parameter of a photon in Schwarzchild metric

Big Guy
Messages
6
Reaction score
0
Hi, I'm having trouble answering Question 9.20 in Hobson's book (Link: http://tinyurl.com/pjsymtd). This asks to prove that a photon will just graze the surface of a massive sphere if the impact parameter is b = r(\frac{r}{r-2\mu})^\frac{1}{2}

So far I have used the geodeisic equations (1-\frac{2\mu}{r})\dot{t} = k and r^2\dot{\phi} = h to give \frac{d\phi}{dt} = \frac{b(1-\frac{2\mu}{r})}{r^2} and b = h/k due to the argument given here http://www.physicspages.com/2013/06/13/photon-equations-of-motion/

This is extremely close to the actual result but I can't figure out why \frac{d\phi}{dt}=\frac{1}{b}.

Any help? Thank you!
 
I solved it myself. The metric for lightlike separation implies g_{00}\dot{t}^2 +g_{11}\dot{r}^2+g_{22}\dot{\phi}^2 =0 and we have expressions for phi dot and t dot from the OP. Just plug them in and since the expression is true everywhere we evaluate it on the surface of the star i.e where motion is purely tangential -> r dot is zero. So we just arrange the above equation for b = h/k to get the required answer.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top