I Implementation of Correlated Gaussian Random Fields Model

confused_engineer
Messages
34
Reaction score
1
TL;DR Summary
I have recently found an article with a useful algorithm. However, I don't understand it very well; thus, I would like to know if it is already implemented
Hello everyone. I have been recently working in an optimization model in the presence of uncertainty. I have read https://www.researchgate.net/publication/310742108_Efficient_Simulation_of_Stationary_Multivariate_Gaussian_Random_Fields_with_Given_Cross-Covariance in which, a methodology for generating correlated gaussian random fields. Unfortunately, I have no idea on how to implement it.

I was wondering if someone has seen an implementation of this methodology or knows where I can find one.

Best regards.
Confused engineer.
 
Physics news on Phys.org
What exactly are you trying to do?

Here is a standard way that works as long as you don't have too many variables to fit in your computer. Let ##N## correlated random variables arranged in a vector ##\mathbf{x}##, with mean ##\mathbf{m} = E[\mathbf{x}]## and covariance matrix ##\mathbf{K} = E\left[ \left(\mathbf{x}-\mathbf{m}\right)\left(\mathbf{x}-\mathbf{m}\right)^T\right]##. One realization of this, ##\mathbf{x}_i##, can be generated by starting with a vector ##\mathbf{y}_i## that contains independent, unit-variance, zero-mean Gaussian random numbers. Below is Matlab code to show how it can be done. Please do the math and verify that you believe the formula I am using is correct - doing such calculations is how you learn this stuff.

Matlab:
% code assumes you have already defined K as an NxN covariance matrix
% and m as an Nx1 vector
N = 100;
yi = randn(N,1); % unit-variance Gaussian-distributed random numbers
Ksqrt = sqrtm(K);  % matrix square-root
xi = Ksqrt*yi + m;
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top