Orion1
- 961
- 3
Implicit Differentiation...Help!
Find \frac{dy}{dx} by Implicit Differentiation:
\tan(x - y) = \frac{y}{1 + x^2}
\frac{d}{dx} (\tan(x - y)) = \frac{d}{dx} \left( \frac{y}{1 + x^2} \right)
\sec^2 (x - y) \cdot \left( 1 - \frac{dy}{dx} \right) = \frac{(1 + x^2) \frac{dy}{dx} - y \frac{d}{dx} (1 + x^2)}{(1 + x^2)^2} = \frac{(1 + x^2) \frac{dy}{dx} - 2xy}{(1 + x^2)^2}
\sec^2 (x - y) \cdot \left( 1 - \frac{dy}{dx} \right) = \frac{(1 + x^2) \frac{dy}{dx} - 2xy}{(1 + x^2)^2}
What am I doing wrong?
Any suggestions?...
Find \frac{dy}{dx} by Implicit Differentiation:
\tan(x - y) = \frac{y}{1 + x^2}
\frac{d}{dx} (\tan(x - y)) = \frac{d}{dx} \left( \frac{y}{1 + x^2} \right)
\sec^2 (x - y) \cdot \left( 1 - \frac{dy}{dx} \right) = \frac{(1 + x^2) \frac{dy}{dx} - y \frac{d}{dx} (1 + x^2)}{(1 + x^2)^2} = \frac{(1 + x^2) \frac{dy}{dx} - 2xy}{(1 + x^2)^2}
\sec^2 (x - y) \cdot \left( 1 - \frac{dy}{dx} \right) = \frac{(1 + x^2) \frac{dy}{dx} - 2xy}{(1 + x^2)^2}
What am I doing wrong?
Any suggestions?...
Last edited: