A brief course on differentials in the plane. Since they are functions on tangent vectors we first discuss tangent vectors. The tangent space to the plane R^2 can be regarded as R^2 itself, because of the availability of translations to identify the tangent spaces at any two points, i.e. we might as well always take tangent vectors to be based at the origin. In this sense a tangent vector at a point of R^2 is given by a pair of numbers (c,d). If we take advantage of the notion of dot product, a linear function on tangent vectors is also given by two numbers say (a,b), where the linear function (a,b) acts on the vector (c,d) with value ac+bd. To keep them apart we could consider the vectors as column vectors of length 2, and the linear functions as row vectors of length 2.
Then if f is a smooth function near p, the partials of f at p, (∂f/ ∂x(p), ∂f/∂y(p)) give us a linear function df(p) on tangent vectors at p. These vary with p, and such a family of varying dual vectors is called a differential (one form). Thus df is a one form, i.e. df is a function whose value at each p is a linear function on tangent vectors at p.
More geometrically, a tangent vector at p is represented by a smooth curve
c:(-e,e)-->R^2 with c(0) = p. Then the action of df(p) on this tangent vector is the value of the derivative of the composition of f and c at zero, i.e. (foc)’(0). According to the chain rule, this value equals ∂f/∂x(p) dx/dt (0) + ∂f/∂y(p) dy/dt (0), where (x(t), y(t)) = c(t) are the component functions of the curve c. I.e. the curve c represents the tangent vector v = c’(0) = (dx/dt (0), dy/dt (0)), and the number
∂f/∂x(p) dx/dt (0) + ∂f/∂y(p) dy/dt (0) = df(p)(v), is the value of df at v.
Now df(p) measures the infinitesimal change in f at p, i.e. evaluating df(p) on tangent vectors at p tells us how f is changing in the direction of that tangent vector. Recall that if f is a smooth function on R^2 then f partitions the plane into level curves where f is constant, the constant levels of f, so that f is not changing along one of these curves, and changes fastest perpendicular to these curves. Of course there are sometimes constant levels of f that are just points, or that are curves but not smooth curves. Such special points are signaled by the fact that df = 0 at those points, i.e. both ∂f/∂x and ∂f/∂y are zero at such points.
But along a smooth level curve, say where f=0, we expect df to have value zero on tangent vectors which are tangent to that level curve, (since f does not change in that direction), and to have non zero value on tangent vectors transverse to that curve, so traveling transverse to a level curve takes us to a different level curve where f has a different value.
To say that df is zero in directions tangent to a given level curve means that if we consider only the curve f=0 for instance then the equation df = 0 will describe the tangent directions along that curve. Since df = ∂f/∂x dx + ∂f/∂y dy, this means that at a point p of the curve f=0, the tangent line at that point to that curve will dot to zero with the coefficients of df, i.e. a vector tangent to the curve f=0 at p, will be perpendicular to the dual vector (∂f/∂x(p), ∂f/∂y(p)). Thus when restricted to the curve f=0, the differential one form ∂f/∂x dx + ∂f/∂y dy, although not identically zero on all vectors in the plane, will have zero value at every tangent vector along the curve, so as a differential one form ON THE CURVE, i.e. as a linear function acting on the tangent spaces to the curve, we do have ∂f/∂x dx + ∂f/∂y dy = 0.
If the f=0 curve is not vertical at the given point, i.e. when f is changing in the y direction, i.e. when ∂f/∂y ≠ 0, then locally y is a function of x, and x is changing as we move along the curve. Hence dx ≠ 0 near that point, and speaking strictly of the action on vectors tangent to that one dimensional curve, we do have that dy is a constant multiple of dx. Thus we can divide dy by dx, where these one forms are thought of after restricting to the tangent space of the one dimensional curve, instead of as one forms on the plane.
Then we do have ∂f/∂x + ∂f/∂y (dy/dx) dx = 0, where dy/dx is really dy divided by dx. Moreover also dy/dx = y’(x), where y(x) is the function defined by considering the curve f=0 locally as the graph of a function.
Thus as a one form on the curve itself, we have ∂f/∂x dx + ∂f/∂y dy/dx dx = 0,
hence ∂f/∂x + ∂f/∂y dy/dx = 0, and then we also get the odd looking equation
dy/dx = (-∂f/∂x)/(∂f/∂y).Oh well, I apologize if maybe this story is too long.