54stickers
- 28
- 0
Hello! I was wondering how I could find the following derivatives from the given function using Jacobian determinants.
f(u,v) = 0
u = lx + my + nz
v = x^{2} + y^{2} + z^{2}
\frac{∂z}{∂x} = ? (I believe y is constant, but the problem does not specify)
\frac{∂z}{∂y} = ? (I believe x is constant, but the problem does not specify)
I tried setting up the jacobian this way (failed):
\frac{∂z}{∂x} = -\frac{\frac{∂(u,v)}{∂(x,y)}}{\frac{∂(u,v)}{∂(z,y)}}
\frac{∂z}{∂y} = -\frac{\frac{∂(u,v)}{∂(y,x)}}{\frac{∂(u,v)}{∂(z,x)}}
f(u,v) = 0
u = lx + my + nz
v = x^{2} + y^{2} + z^{2}
\frac{∂z}{∂x} = ? (I believe y is constant, but the problem does not specify)
\frac{∂z}{∂y} = ? (I believe x is constant, but the problem does not specify)
I tried setting up the jacobian this way (failed):
\frac{∂z}{∂x} = -\frac{\frac{∂(u,v)}{∂(x,y)}}{\frac{∂(u,v)}{∂(z,y)}}
\frac{∂z}{∂y} = -\frac{\frac{∂(u,v)}{∂(y,x)}}{\frac{∂(u,v)}{∂(z,x)}}
Last edited: