MHB Improper Integral Convergence & Divergence

Click For Summary
The convergence of the improper integral $$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$ depends on the values of α and β. It diverges when β < 0 for any α. When β > 0 and α + 1 < 0, the integral converges, while it diverges if β > 0 and α + 1 > 0. The Limit Comparison Test is used to analyze the behavior of the integral in these cases. Understanding these conditions is crucial for determining the integral's convergence or divergence.
Also sprach Zarathustra
Messages
43
Reaction score
0
When the following improper integral converges? When it diverges? $$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$
 
Mathematics news on Phys.org
Also sprach Zarathustra said:
When the following improper integral converges? When it diverges?

$$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$

Hi Also sprach Zarathustra,

\[\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\]

We shall use the Limit Comparison Test to determine the convergence/divergence of this improper integral.

Let, \(\displaystyle f(x)=\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} \mbox{ and }g(x)=x^{\alpha}\). It is clear that both \(f(x)\mbox{ and }g(x)\) are positive for all \(x>0\).

Case 1: When \(\mathbf{\beta<0}\)

\[\displaystyle\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\lim_{x\rightarrow\infty}\frac{1}{1+x^{\beta}\sin^2(x)}=1\]

It is clear that, \(\displaystyle\int_{0}^{\infty}x^{\alpha}\,dx\) diverges for each \(\alpha\in\Re\)

\[\therefore\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ diverges when }\beta<0\]

Case 2: When \(\mathbf{\beta>0\mbox{ and }\alpha+1<0}\)

\[\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}=\int^{1}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}+\int^{ \infty}_{1} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\]

Since \(\displaystyle\int^{1}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\) is a proper integral, converge/divergence of \(\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\) depends on the convergence/divergence of \(\displaystyle\int^{\infty}_{1} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\)

\[\displaystyle\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\lim_{x\rightarrow\infty}\frac{1}{1+x^{\beta}\sin^2(x)}=0\]

\(\displaystyle\int_{1}^{\infty}x^{\alpha}\,dx=-\frac{1}{\alpha+1}\mbox{ for each }\alpha+1<0\)

\[\therefore\int^{\infty}_{1}\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ converges when }\beta>0\mbox{ and }\alpha+1<0\]

\[\Rightarrow\int^{\infty}_{0}\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ converges when }\beta>0\mbox{ and }\alpha+1<0\]

Case 3: When \(\mathbf{\beta>0\mbox{ and }\alpha+1>0}\)

For this case I need a little bit of help from the Wolfram Integrator. :)

It could be shown that, \(\displaystyle \frac{x^{ \alpha}}{1+x^{\beta}\sin^2(x)}>\frac{x^{ \alpha}}{1+x^{\beta}}\mbox{ for }x>0\,.\)

For \(\displaystyle\int\frac{x^{\alpha}dx}{1+x^{\beta}}\) the Wolfram Integrator gives,

\[\displaystyle\int\frac{x^{\alpha}dx}{1+x^{\beta}}=\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,-x^{\beta}\right)}{\alpha+1}\]

Where \(\,_2F_1\) is the Hypergeometric series.

\[\Rightarrow\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}}=\lim_{x \rightarrow\infty}\left\{\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,-x^{\beta}\right)}{\alpha+1}\right\}-\left\{\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,0\right)}{\alpha+1}\right\}\]

Since the \(x^{ \alpha+1}\) term explodes as \(x\rightarrow\infty\) the first term in the right hand side diverges. The radius of convergence of the Hypergeometric series is 1 and therefore the second term has a finite value. Hence, \(\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}}\mbox{ should diverge.}\)

\[\therefore\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ diverges when }\beta>0\mbox{ and }\alpha+1>0\]
 
Last edited:
I was trying to solve the integral that seemed unsolvable , actually I didn't read the
question :o
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K