Improper Integral Convergence & Divergence

Click For Summary
SUMMARY

The convergence and divergence of the improper integral $$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$ is determined using the Limit Comparison Test. The integral diverges when \(\beta < 0\) and also diverges when \(\beta > 0\) and \(\alpha + 1 > 0\). It converges when \(\beta > 0\) and \(\alpha + 1 < 0\). The analysis involves comparing the integral to simpler functions and utilizing properties of the Hypergeometric series for specific cases.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with the Limit Comparison Test
  • Knowledge of Hypergeometric series
  • Basic calculus concepts including convergence and divergence
NEXT STEPS
  • Study the Limit Comparison Test in detail
  • Learn about Hypergeometric functions and their applications
  • Explore advanced techniques for evaluating improper integrals
  • Investigate convergence tests for series and integrals
USEFUL FOR

Mathematicians, calculus students, and anyone involved in advanced integral calculus or analysis of convergence in mathematical functions.

Also sprach Zarathustra
Messages
43
Reaction score
0
When the following improper integral converges? When it diverges? $$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$
 
Physics news on Phys.org
Also sprach Zarathustra said:
When the following improper integral converges? When it diverges?

$$ \int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} $$

Hi Also sprach Zarathustra,

\[\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\]

We shall use the Limit Comparison Test to determine the convergence/divergence of this improper integral.

Let, \(\displaystyle f(x)=\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)} \mbox{ and }g(x)=x^{\alpha}\). It is clear that both \(f(x)\mbox{ and }g(x)\) are positive for all \(x>0\).

Case 1: When \(\mathbf{\beta<0}\)

\[\displaystyle\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\lim_{x\rightarrow\infty}\frac{1}{1+x^{\beta}\sin^2(x)}=1\]

It is clear that, \(\displaystyle\int_{0}^{\infty}x^{\alpha}\,dx\) diverges for each \(\alpha\in\Re\)

\[\therefore\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ diverges when }\beta<0\]

Case 2: When \(\mathbf{\beta>0\mbox{ and }\alpha+1<0}\)

\[\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}=\int^{1}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}+\int^{ \infty}_{1} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\]

Since \(\displaystyle\int^{1}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\) is a proper integral, converge/divergence of \(\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\) depends on the convergence/divergence of \(\displaystyle\int^{\infty}_{1} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\)

\[\displaystyle\lim_{x\rightarrow\infty}\frac{f(x)}{g(x)}=\lim_{x\rightarrow\infty}\frac{1}{1+x^{\beta}\sin^2(x)}=0\]

\(\displaystyle\int_{1}^{\infty}x^{\alpha}\,dx=-\frac{1}{\alpha+1}\mbox{ for each }\alpha+1<0\)

\[\therefore\int^{\infty}_{1}\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ converges when }\beta>0\mbox{ and }\alpha+1<0\]

\[\Rightarrow\int^{\infty}_{0}\frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ converges when }\beta>0\mbox{ and }\alpha+1<0\]

Case 3: When \(\mathbf{\beta>0\mbox{ and }\alpha+1>0}\)

For this case I need a little bit of help from the Wolfram Integrator. :)

It could be shown that, \(\displaystyle \frac{x^{ \alpha}}{1+x^{\beta}\sin^2(x)}>\frac{x^{ \alpha}}{1+x^{\beta}}\mbox{ for }x>0\,.\)

For \(\displaystyle\int\frac{x^{\alpha}dx}{1+x^{\beta}}\) the Wolfram Integrator gives,

\[\displaystyle\int\frac{x^{\alpha}dx}{1+x^{\beta}}=\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,-x^{\beta}\right)}{\alpha+1}\]

Where \(\,_2F_1\) is the Hypergeometric series.

\[\Rightarrow\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}}=\lim_{x \rightarrow\infty}\left\{\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,-x^{\beta}\right)}{\alpha+1}\right\}-\left\{\frac{x^{ \alpha+1}\,_2F_1\left(1,\frac{ \alpha+1}{ \beta},\frac{\alpha+1}{ \beta}+1,0\right)}{\alpha+1}\right\}\]

Since the \(x^{ \alpha+1}\) term explodes as \(x\rightarrow\infty\) the first term in the right hand side diverges. The radius of convergence of the Hypergeometric series is 1 and therefore the second term has a finite value. Hence, \(\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}}\mbox{ should diverge.}\)

\[\therefore\displaystyle\int^{\infty}_{0} \frac{x^{\alpha}dx}{1+x^{\beta}\sin^2(x)}\mbox{ diverges when }\beta>0\mbox{ and }\alpha+1>0\]
 
Last edited:
I was trying to solve the integral that seemed unsolvable , actually I didn't read the
question :o
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K