estro
- 239
- 0
Homework Statement
f(x) is a continuous and positive function when x\in[0,\infty). (#1)
x_n is a monotonic increasing sequence, x_0=0 ,x_n \rightarrow \infty. (#2)
Prove or contradict:
\mbox{If } \sum_{n=0}^\infty \int_{x_n}^{x_(n+1)} f(x)dx \mbox{ is convergent (#3) then } \int_{0}^\infty f(x)dx \mbox{ is also convergent.}3. The attempt
(*3)\ and\ by\ the\ Cauchy\ Criterion\ \Longrightarrow\ \forall\ \epsilon>0\ \exists\ N_1>0,\ so\ \forall\ m>k>N_1
\left \int_{x_(k+1)}^{x_(m+1)} f(x)dx=(*1)=| \sum_{n=0}^\infty \int_{x_n}^{x_(n+1)} f(x)dx|<\epsilon\mbox{ (*4)} \right(*2)\ \Longrightarrow\ \forall\ N_1>0\ \exists\ N>0\ so\ \forall\ n>N_1,\ x_n>N\ \ \ \ (*5) }
(*4)\ and\ (*5)\ \Longrightarrow\ \forall\ m>k>N\ \int_{x_(k+1)}^{x_(m+1)} f(x)dx<\epsilon\\\Longrightarrow\ Cauchy\ Criterion\ \int_{0}^\infty f(x)dx\ is\ convergent.
It seems right to me, but I'm not sure...
I think i also have vice versa proof.
Last edited: