Solving Impulse-Diffy Equation: y''+2y'+3y=sin(t)+δ(t-3π)

  • Thread starter Thread starter polarbears
  • Start date Start date
polarbears
Messages
23
Reaction score
0

Homework Statement


y''+2y'+3y=sin(t)+\delta (t-3 \pi )


Homework Equations





The Attempt at a Solution


Left side is just Y(s)*(s^2+1)-1
But I don't know how to deal with the delta function, I made it into just an intergral but I don't know how to intergrate it.
 
Physics news on Phys.org
L[\delta(t-t_0)]=e^{-t_0 s}


If I remember correctly that is.
 
thanks=)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top