I In quantum search algorithm, how to interpret the effect of U(t)?

Haorong Wu
Messages
417
Reaction score
90
TL;DR Summary
In quantum search algorithm, how to interpret the effect of U(t) as a rotation on the Bloch sphere?
In Nielsen's QCQI, in page 259, it reads,

$$U \left ( \Delta t \right ) = \left ( \cos^2 \left ( \frac {\Delta t} 2 \right ) - \sin ^2 \left ( \frac {\Delta t} 2 \right ) \vec \psi \cdot \hat z \right ) I \\ -2 i \sin \left ( \frac {\Delta t} 2 \right ) \left ( \cos \left ( \frac {\Delta t} 2 \right ) \frac {\vec \psi + \hat z} 2 + \sin \left ( \frac {\Delta t} 2 \right ) \frac {\vec \psi \times \hat z} 2 \right ) \cdot \vec \sigma$$ where ##U \left ( \Delta t \right )## is a operation of a Hamiltonian, ##\Delta t## is the time interval, ##\vec \psi## is the initial state.

Well, it seems complicated. But with ##\vec r = \cos \left ( \frac {\Delta t} 2 \right ) \frac {\vec \psi + \hat z} 2 + \sin \left ( \frac {\Delta t} 2 \right ) \frac {\vec \psi \times \hat z} 2 ## and ## \vec \psi \cdot \hat z = \frac 2 N -1 ##
where ##N## is the number of the elements in the search space, it would be simplified to ##U \left ( \Delta t \right ) = \left (1-\frac 2 N \sin^2 \left ( \frac {\Delta t} 2 \right ) \right ) I -2 i \sin \left ( \frac {\Delta t} 2 \right ) \vec r \cdot \vec \sigma##.

Then the book reads, ##U \left ( \Delta t \right ) ## is a rotation on the Bloch sphere about an axis of rotation ##\vec r## and through an angle ##\theta## defined by ##\cos \left ( \frac {\theta} 2 \right ) = 1-\frac 2 N \sin^2 \left ( \frac {\Delta t} 2 \right ) ##.

My problem is, the definition of the rotation by ##\theta## about any ##\hat n## axis is ## R_{\hat n} \left ( \theta \right ) = \cos \left ( \frac \theta 2 \right ) I - i \sin \left ( \frac \theta 2 \right ) \hat n \cdot \vec \theta##. Then in this case, ##\sin \left ( \frac \theta 2 \right ) = 2 \sin \left ( \frac {\Delta t} 2 \right ) ##.

Then ##\sin^2 \left ( \frac \theta 2 \right ) + \cos^2 \left ( \frac \theta 2 \right ) \neq 1##.

Where have I made a mistake?
 
Physics news on Phys.org
Haorong Wu said:
Then in this case, ##\sin \left ( \frac \theta 2 \right ) = 2 \sin \left ( \frac {\Delta t} 2 \right ) ##.

I don't understand this.

Note that ##\vec{r}## is not a unit vector in
Haorong Wu said:
##U \left ( \Delta t \right ) = \left (1-\frac 2 N \sin^2 \left ( \frac {\Delta t} 2 \right ) \right ) I -2 i \sin \left ( \frac {\Delta t} 2 \right ) \vec r \cdot \vec \sigma##
Writing ##\vec{r} = r \hat{r}## gives
$$\sin \left( \frac{\theta}{2} \right) = 2r \sin \left( \frac{\Delta t}{2} \right) .$$
 
  • Like
Likes Haorong Wu
Haorong Wu said:
Summary: In quantum search algorithm, how to interpret the effect of U(t) as a rotation on the Bloch sphere?

In Nielsen's QCQI, in page 259, it reads,

$$U \left ( \Delta t \right ) = \left ( \cos^2 \left ( \frac {\Delta t} 2 \right ) - \sin ^2 \left ( \frac {\Delta t} 2 \right ) \vec \psi \cdot \hat z \right ) I \\ -2 i \sin \left ( \frac {\Delta t} 2 \right ) \left ( \cos \left ( \frac {\Delta t} 2 \right ) \frac {\vec \psi + \hat z} 2 + \sin \left ( \frac {\Delta t} 2 \right ) \frac {\vec \psi \times \hat z} 2 \right ) \cdot \vec \sigma$$ where ##U \left ( \Delta t \right )## is a operation of a Hamiltonian, ##\Delta t## is the time interval, ##\vec \psi## is the initial state.

Well, it seems complicated. But with ##\vec r = \cos \left ( \frac {\Delta t} 2 \right ) \frac {\vec \psi + \hat z} 2 + \sin \left ( \frac {\Delta t} 2 \right ) \frac {\vec \psi \times \hat z} 2 ## and ## \vec \psi \cdot \hat z = \frac 2 N -1 ##
where ##N## is the number of the elements in the search space, it would be simplified to ##U \left ( \Delta t \right ) = \left (1-\frac 2 N \sin^2 \left ( \frac {\Delta t} 2 \right ) \right ) I -2 i \sin \left ( \frac {\Delta t} 2 \right ) \vec r \cdot \vec \sigma##.

Then the book reads, ##U \left ( \Delta t \right ) ## is a rotation on the Bloch sphere about an axis of rotation ##\vec r## and through an angle ##\theta## defined by ##\cos \left ( \frac {\theta} 2 \right ) = 1-\frac 2 N \sin^2 \left ( \frac {\Delta t} 2 \right ) ##.

My problem is, the definition of the rotation by ##\theta## about any ##\hat n## axis is ## R_{\hat n} \left ( \theta \right ) = \cos \left ( \frac \theta 2 \right ) I - i \sin \left ( \frac \theta 2 \right ) \hat n \cdot \vec \theta##. Then in this case, ##\sin \left ( \frac \theta 2 \right ) = 2 \sin \left ( \frac {\Delta t} 2 \right ) ##.

Then ##\sin^2 \left ( \frac \theta 2 \right ) + \cos^2 \left ( \frac \theta 2 \right ) \neq 1##.

Where have I made a mistake?
it has taken me a while to unpack all of the notation. I think the issue is the definitions of ##\vec \psi ## and ##\hat z##. On p. 259 these are given as:
##\vec \psi = (2 \alpha \beta, 0,\alpha^2 - \beta^2)##
##\hat z = (0, 0, 1)##
With these definitions, I get the same result as in the book.
Edit: Also, is ##\vec r## a unit vector?
 
Last edited:
  • Like
Likes Haorong Wu
George Jones said:
I don't understand this.

Note that ##\vec{r}## is not a unit vector in

Writing ##\vec{r} = r \hat{r}## gives
$$\sin \left( \frac{\theta}{2} \right) = 2r \sin \left( \frac{\Delta t}{2} \right) .$$
Thanks, George. I made a mistake when I assumed that ##\vec r## is normalized.

In fact, ##\left | \vec r \right | =\sqrt {\alpha ^2 \beta ^2 + \alpha ^4 \cos ^2 \frac {\Delta t} 2}##, and the result is consistent with ##\sin^2 \left ( \frac \theta 2 \right ) + \cos^2 \left ( \frac \theta 2 \right ) = 1##

Thanks!
 
tnich said:
it has taken me a while to unpack all of the notation. I think the issue is the definitions of ##\vec \psi ## and ##\hat z##. On p. 259 these are given as:
##\vec \psi = (2 \alpha \beta, 0,\alpha^2 - \beta^2)##
##\hat z = (0, 0, 1)##
With these definitions, I get the same result as in the book.

Yes, after calculation, I found out that I made a mistake when I assume ##\vec r## is normalized which is not.

Thanks!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top