Indefinite integral of cross product of 2 function

Click For Summary
The discussion focuses on the indefinite integral of the cross product of two functions, specifically addressing the integral of v and its second derivative. There is confusion regarding the notation used, particularly the representation of vectors and their derivatives. The problem statement is deemed unclear, prompting requests for more details to clarify the computation. Participants highlight the importance of generality in mathematical proofs and the correct handling of integrals involving vector derivatives. The conversation emphasizes the need for precise notation to avoid misunderstandings in mathematical discussions.
agnimusayoti
Messages
239
Reaction score
23
Homework Statement
If ##\vec{v} (t)## is a vector function of t, find indefinite integral
$$\int {\left(\vec v \times \frac{d^2 \vec v}{dt^2} dt\right)}$$
Relevant Equations
Idk.
I've tried with this work in attachment. i&m not sure of my answer is correct.
 

Attachments

  • 15926584704436099750539116260485.jpg
    15926584704436099750539116260485.jpg
    36.3 KB · Views: 231
Physics news on Phys.org
The problem statement is not given properly. Can you provide us proper details? If you are computing:

$$\int v \frac{d^2v}{dt^2} dt$$​

You mentioned ##dv = b(t) dt##, and then computed ##v##:

$$v = \frac{dv}{dt}$$​

You know this is inherently not correct, unless the function is specifically ##v(t) = e^t##. Don't forget about generality when writing math proofs, or computing such things.
 
  • Like
Likes Delta2
Zondrina said:
The problem statement is not given properly. Can you provide us proper details? If you are computing:
$$\int v \frac{d^2v}{dt^2} dt$$​
The thread title says cross product.
 
Last edited:
Screen Shot 2020-06-21 at 10.51.10 AM.png
Screen Shot 2020-06-21 at 10.51.39 AM.png

Integrate all the remaining terms, and you get a sum of antiderivatives that subtract from the other terms.

I still dislike how we use X for multiplication, and cross product every time I see it, sorry for the confusion.
 
@agnimusayoti , I think you confused everyone with your unfortunate choice of notation, using v (no arrow) for ##\frac{d\vec v}{dt}## and u for ##\vec v##.
Where your algebra goes wrong is in handling ##\int \frac{d\vec v}{dt}\times d\vec v##. The correct result becomes obvious if you write it as ##\int \frac{d\vec v}{dt}\times \frac{d\vec v}{dt}dt##
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K