karush said:
$\int\frac{1}{\sqrt{2+3y^2}}dy$
$u=\sqrt{3/2}\tan\left({\theta}\right)$
I continued but it went south..
Using the substitution I suggested:
$\displaystyle \begin{align*} \int{ \frac{1}{\sqrt{2 + 3y^2}}\,\mathrm{d}y} &= \frac{1}{\sqrt{3}}\int{ \frac{1}{\sqrt{ \frac{2}{3} + y^2}}\,\mathrm{d}y} \end{align*}$
Now substitute $\displaystyle \begin{align*} y = \sqrt{ \frac{2}{3} } \sinh{(t)} \implies \mathrm{d}y = \sqrt{\frac{2}{3}} \cosh{(t)}\,\mathrm{d}t \end{align*}$ and the integral becomes
$\displaystyle \begin{align*} \frac{1}{\sqrt{3}}\int{ \frac{1}{\sqrt{\frac{2}{3} + y^2}}\,\mathrm{d}y} &= \frac{1}{\sqrt{3}}\int{ \frac{1}{\sqrt{\frac{2}{3} + \left[ \sqrt{\frac{2}{3}}\sinh{(t)} \right] ^2}} \, \sqrt{\frac{2}{3}}\cosh{(t)}\,\mathrm{d}t } \\ &= \frac{\sqrt{2}}{3} \int{ \frac{\cosh{(t)}}{\sqrt{ \frac{2}{3} \left[ 1 + \sinh^2{(t)} \right] }} \,\mathrm{d}t } \\ &= \frac{\sqrt{2}}{3} \int{ \frac{\sqrt{3}\cosh{(t)}}{\sqrt{2} \cosh{(t)} } \,\mathrm{d}t} \\ &= \frac{\sqrt{3}}{3} \int{ 1\,\mathrm{d}t } \\ &= \frac{\sqrt{3}}{3} t + C \end{align*}$
Now remembering that $\displaystyle \begin{align*} y = \sqrt{ \frac{2}{3} }\sinh{(t)} \end{align*}$ that means
$\displaystyle \begin{align*} y &= \frac{\sqrt{2}\sinh{(t)}}{\sqrt{3}} \\ \sqrt{3}\,y &= \sqrt{2}\sinh{(t)} \\ \frac{\sqrt{3}\,y}{\sqrt{2}} &= \sinh{(t)} \\ \frac{\sqrt{6}\,y}{2} &= \sinh{(t)} \\ t &= \textrm{arsinh}\,\left( \frac{\sqrt{6}\,y}{2} \right) \end{align*}$
and thus the answer is $\displaystyle \begin{align*} \frac{\sqrt{3}}{3} \,\textrm{arsinh}\,\left( \frac{\sqrt{6}\,y}{2} \right) + C \end{align*}$.