Ivy. If I may say so, you already have a better understanding of Electromagnetic Induction than many students ever achieve!
Re your first paragraph... Emf = rate of change of flux linkage always works, whether the change in flux linkage is produced by a conductor cutting lines of magnetic flux, or there is no obvious 'cutting', as when the flux density changes in the core of a transformer, and an emf is induced in the secondary coil. To apply the rate of change of flux idea to a moving conductor you need to think of the conductor as part of a circuit; if the conductor moves in such a way that the area of the circuit changes, the flux linking the circuit changes. See post 2 of this thread (where I discuss a conductor sliding on rails joined by a resistor at one end).
What I've just said addresses (I hope) your third paragraph [which I'd like to quote, but need a lesson!] Return now to your second paragraph... What your tutor says is, of course, perfectly correct. Turning the loop about a diameter does change the flux through it, as flux = BA cos(\psi) in which \psi is the angle between the field direction and the normal to the plane of the loop. But moving the loop in the field without changing its orientation doesn't change the flux through the loop, as BA cos(\psi) stays the same, so no emf is induced in it.
What particularly impressed me about your post was the fourth paragraph, where you explain that the emf induced in a moving conductor arises from the motor effect. You are absolutely right. In a single straight piece of wire moving at speed v at right angles to the magnetic field the force on each charge carrier due to the motor effect is Bqv. Charge carriers (electrons, say) will pile up at one end of the conductor, leaving the other end oppositely charged. But this piling up will produce an electric field E, which exerts an opposite force, qE, on the charge carriers from the magnetic one, so the piling up will stop when qE = Bqv, so E = Bv. But E = p.d. across ends of wire/ length of wire = V/L, so the induced emf is BLv. This is exactly the same result as we get by considering the rate of change of flux linking a circuit of which the conductor is part, when the rest of the circuit stays still, so that the circuit area changes when the conductor moves. ['Rails' argument in post 2.]
But if we can understand from the motor effect the emf in a moving conductor, why do we need arguments about flux linkage? Well, it's sometimes easier to think this way, as for the ring moving in the uniform field. Also, as I said earlier, e = - dphi/dt also works when the flux changes due to flux density changing, without obvious cutting of flux. One equation deals with both phenomena. Some would say that this is the main aim of Physics: to explain many phenomena using a minimum number of basic laws.