DNAPolymerase
- 5
- 0
Homework Statement
An electric field is directed out of the page within a circular region of radius R = 3.00 cm. The field magnitude is E = (0.500 V/ms)(1 - \frac{r}{R})t, where t is in seconds and r is the radial distance (r≤R). What is the magnitude of the induced magnetic field at a radial distance of 2.00 cm?
Homework Equations
Maxwell - Ampere's Law
\oint \vec{B} \cdot d\vec{s} = μ_0ε_0 \frac{d\Phi_B}{dt}
The Attempt at a Solution
Since B and ds are parallel, their dot product will equal Bds, or since ds is a circle at radius r, 2\pi rB. I got caught up on the left-hand side of the equation. I know I can simplify it to:
μ_0ε_0 \frac{d}{dt}\int \vec{E} \cdot d\vec{A}, which further simplifies to (since E and dA are parallel):
μ_0ε_0 \frac{d}{dt}\int E dA
I'm lost as to how to simplify that integral. I think I could do a double integral to solve to surface integral, however, this is an introductory physics course only requiring Calculus 1 and 2, so I wouldn't have assumed such integrals would be necessary.
Also, assuming I've simplified correctly, would I integrate, then take the time-derivative, or could I take the time derivative of E first, then integrate?
Thanks!
Last edited: