Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Induction over the rationals?

  1. Apr 12, 2010 #1
    Is there a variant form of induction to prove something about the rationals as opposed to just the natural numbers?

    You could start by proving it for the open interval (0, 1) by showing that for an arbitrary integer m, m < n, [tex]P(\frac{m}{n}) \Rightarrow P(\frac{m}{n+1})[/tex], for all natural numbers n, and then extend the domain to all positive rationals.

    Is this even plausible?
     
  2. jcsd
  3. Apr 13, 2010 #2
    Certainly, try the dictionary or spiral ordering of rationals. For that matter, induction is applicable to any countable set.The practical appicability is limited, though.
     
  4. Apr 17, 2010 #3
    I would try proving it for the open interval (0, 1) by showing that for an arbitrary integer m, m < n, [tex]P(\frac{m}{n}) \Rightarrow P(\frac{m+1}{n})[/tex], for all natural numbers n, and then extend the starter domain to all positive rationals m/n, m<n. Where n = 1 you have the standard induction process.
     
    Last edited: Apr 17, 2010
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook