courtrigrad
- 1,236
- 2
Prove that 1^{3} + 2^{3} + 3^{3} + ... + n^{3} = (1 + 2 + 3 + ... + n)^{2}. So for n =1 1^{3} = 1^{2}. For n = k, 1^{3} + 2^{3} + 3^{3} + ...+ k^{3} = (1+2+3+...+ k )^{2}. For n = k+1,1^{3} + 2^{3} + 3^{3} +...+ k^{3} + (k+1)^{3} = (1+2+3+..+ (k+1))^{2}. So do I then do this:
1^{3} + 2^{3} + 3^{3} + ... + k^{3} + (k+1)^{3} = (1+2+3+...+ k)^{2} + (k+1)^{3} to show that it is equal to n = k+1?
Thanks
1^{3} + 2^{3} + 3^{3} + ... + k^{3} + (k+1)^{3} = (1+2+3+...+ k)^{2} + (k+1)^{3} to show that it is equal to n = k+1?
Thanks
Last edited: