Inequalities of real and complex numbers

Char. Limit
Gold Member
Messages
1,222
Reaction score
23
I was considering complex numbers (independently) and I came across an interesting question. Are any of these statements true?

1<i

1>i

i<-i

-1<i

-i<i<-1
 
Mathematics news on Phys.org
The complex numbers are not a "ordered field". Neither "1< i" nor "i< 1" is true. In fact, you simply cannot write "a< b" for general complex numbers a and b.
 
Indeed you cannot order complex numbers.
I guess, the order relations need to obey some sensible rules. With complex numbers you would always get contradictions. You could try to define the order by the modulus of the complex number. But then the universal law
a&lt;b\qquad\Rightarrow\qquad a+c&lt;b+c
would not hold for all complex numbers. Therefore you wouldn't be able to use the most basic properties for rearranging equations with variables.
 
Specifically, in an ordered field, the order must obey
1) if a< b and c is any third member of the field then a+ c< b+ c.

2) if a< b and 0< c, then ac< bc

3) For any two a, b in the field one and only one must be true:
i) a= b
ii) a< b
iii) b< a.

Suppose the Complex number were an ordered field with order "<". Clearly i is not equal to 0 so by (iii) either i< 0 or 0< i.

If i< 0 then, adding -i to both sides, by (i) 0< -i. So by (ii) we must have i(-i)< o(-i) or -i^2= 1&lt; 0. Since this is not necessarily the "usual" order on real numbers that is not yet a contradiction. However, that implies, as before, that 0< -1 and then, multiplying i< 0 by -1, we have -i< 0, contradicting 0< -i above.

Suppose 0< i. Then 0(i)< i(i)= -1. But then 0(-1)< i(-1) so that 0< -i and, adding i to both sides, i< 0, again a contradiction.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

3
Replies
108
Views
10K
Replies
7
Views
2K
Replies
7
Views
4K
Replies
7
Views
740
Replies
2
Views
1K
Replies
13
Views
2K
Replies
6
Views
1K
Back
Top