Infintite plane of charge guass law

  • Thread starter Thread starter kiwileaf
  • Start date Start date
  • Tags Tags
    Charge Law Plane
AI Thread Summary
The discussion centers on understanding the application of Gauss's law to an infinite plane of charge. The key point is that when calculating the charge enclosed by a Gaussian cylinder, only the area of the end caps is considered, as the electric field is perpendicular to the sides of the cylinder, resulting in no flux through those surfaces. The charge enclosed is calculated as q=σA, where σ is the surface charge density and A is the area of the end caps. This approach clarifies that the charge is not integrated over the entire volume of the cylinder, but rather only over the area intersecting the plane. The participants confirm that this understanding resolves the confusion regarding the charge calculation.
kiwileaf
Messages
4
Reaction score
0
when deriving the electric field through using gauss's law, I do not completely understand why when
calculating for the charge enclosed the answer key says
"The surface charge distribution on is uniform. The area of the intersection of he non-conducting plane with the Gaussian cylinder is equal to the area of the end-caps, . Therefore the charge enclosed in the cylinder is q=σA"

I thought that the total charge would be the integral of sigma with respect to the volume of a cylinder (dv), which would make the total charge enclosed q=σV

However, even if it is q=σA I do not understand why we would not include the entire area of the cylinder because wouldn't the charge be over that entire Gaussian surface? why do we disregard the sides and only include the end caps for area?
 
Physics news on Phys.org
(this is for an infinite plane of charge with a uniformly distributed positive charge density σ) and using Gaussian surface of a cylinder where the infinite plan is at x=0 and the two sides of the cylnider extend to include x<0 and x>0
 
We disregard the area of the sides because the normal vectors to the sides (, i.e. the curved part) is perpendicular to the electric field vector... It means no flux passes through the curved part of the cylinder.
 
Aniruddha@94 said:
We disregard the area of the sides because the normal vectors to the sides (, i.e. the curved part) is perpendicular to the electric field vector... It means no flux passes through the curved part of the cylinder.
I understand that when computing the integral of E dot dA the E dot dA of the sides would be zero, but I was talking about simply calculating and integrating the amount of charge enclosed (but I think I understand that the charge enclosed would be the σ times the area of the circle of the cylinder that intersects the plane not a three dimensional volume where the sides are included)
 
So that clears it out for you?
 
kiwileaf said:
I understand that when computing the integral of E dot dA the E dot dA of the sides would be zero, but I was talking about simply calculating and integrating the amount of charge enclosed (but I think I understand that the charge enclosed would be the σ times the area of the circle of the cylinder that intersects the plane not a three dimensional volume where the sides are included)
Yes, you've got it. We take ( sigma)X(end area) because that's the only part of the sheet inside the cylinder.
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
It may be shown from the equations of electromagnetism, by James Clerk Maxwell in the 1860’s, that the speed of light in the vacuum of free space is related to electric permittivity (ϵ) and magnetic permeability (μ) by the equation: c=1/√( μ ϵ ) . This value is a constant for the vacuum of free space and is independent of the motion of the observer. It was this fact, in part, that led Albert Einstein to Special Relativity.

Similar threads

Replies
83
Views
4K
Replies
5
Views
3K
Replies
1
Views
1K
Replies
7
Views
3K
Replies
30
Views
2K
Replies
3
Views
2K
Back
Top