Initial Objects in the Category Ring

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Initial Ring
Click For Summary

Discussion Overview

The discussion revolves around the concept of initial objects in the category of rings, specifically focusing on the uniqueness of ring homomorphisms as described in Paolo Aluffi's book, Algebra: Chapter 0. Participants are seeking clarification on the implications of certain properties of ring homomorphisms and the application of the distributivity axiom.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants inquire about the formal proof of the uniqueness of a ring homomorphism given that it satisfies $$\phi(1) = 1_R$$ and preserves addition.
  • One participant suggests that defining a ring homomorphism from $$\Bbb Z$$ to $$R$$ and setting $$a = f(1)$$ leads to the conclusion that if $$a = 1_R$$, then the homomorphism is uniquely determined.
  • Another participant mentions that if one cannot assume a ring homomorphism is a $$\Bbb Z$$-homomorphism, induction may be necessary to demonstrate that $$f(n) = nf(1)$$ for all $$n \in \Bbb Z$$.
  • Clarifications are requested regarding the definition of a $$\Bbb Z$$-homomorphism and the justification for the equality $$f(n \cdot 1) = nf(1)$$.
  • One participant asserts that a $$\Bbb Z$$-homomorphism is a $$\Bbb Z$$-module homomorphism and refers back to a previous post for the justification of the equality in question.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the formal justification of certain properties of ring homomorphisms, and there are multiple viewpoints on how to approach the proof of uniqueness. The discussion remains unresolved on some aspects, particularly regarding the application of induction and the definitions involved.

Contextual Notes

Some assumptions about the nature of ring homomorphisms and their properties are not explicitly stated, which may affect the clarity of the arguments presented. The discussion also highlights dependencies on definitions that may not be universally understood among participants.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paolo Aluffi's book, Algebra: Chapter 0.

I have a question related to Aluffi's description of initial objects in the category ring ... ...

In Chapter III, Section 2. on the category ring, we read the following:View attachment 4480
View attachment 4481QUESTION 1

In the above text, we read the following:

" ... ... This ring homomorphism is unique, since it is determined by the requirement that $$\phi (1) = 1_R$$ and by the fact that $$\phi$$ preserves addition ... ... "Can someone please explain to me (precisely, rigorously and formally) why the requirement that $$\phi (1) = 1_R$$ and the fact that $$\phi$$ preserves addition imply that ring homomorphism is unique?

(Intuitively the above seems true ... but how do you show this exactly and precisely ... wonder if I am overthinking this matter ... )QUESTION 2

In the above text, we read the following:

" ... ... But $$\phi$$ is in fact a ring homomorphism, since $$\phi (1) = 1_R$$, and

$$\phi (mn) = (mn) 1_R = m(n1_R) = (m1_R) \cdot (n 1_R) = \phi (m) \cdot \phi (n)
$$

where the equality $$m(n1_R) = (m1_R) \cdot (n 1_R)$$ holds by the distributivity axiom ... ... "Can someone explain how the equality $$m(n1_R) = (m1_R) \cdot (n 1_R)$$ follows from the distributivity axiom

Help will be much appreciated ... ...

Peter
 
Last edited:
Physics news on Phys.org
Peter said:
QUESTION 1

In the above text, we read the following:

" ... ... This ring homomorphism is unique, since it is determined by the requirement that $$\phi (1) = 1_R$$ and by the fact that $$\phi$$ preserves addition ... ... "Can someone please explain to me (precisely, rigorously and formally) why the requirement that $$\phi (1) = 1_R$$ and the fact that $$\phi$$ preserves addition imply that ring homomorphism is unique?

(Intuitively the above seems true ... but how do you show this exactly and precisely ... wonder if I am overthinking this matter ... )

Let $f : \Bbb Z \to R$ be a ring homomoprhism. Define $a := f(1)$. Since $f$ is a $\Bbb Z$-homomorphism, $f(n) = f(n\cdot 1) = nf(1) = na$ for all $n\in \Bbb Z$. Choosing $a = 1_R$ forces $f(n) = \phi(n)$ for all $n \in \Bbb Z$; due to this choice, $f = \phi$.
QUESTION 2

In the above text, we read the following:

" ... ... But $$\phi$$ is in fact a ring homomorphism, since $$\phi (1) = 1_R$$, and

$$\phi (mn) = (mn) 1_R = m(n1_R) = (m1_R) \cdot (n 1_R) = \phi (m) \cdot \phi (n)
$$

where the equality $$m(n1_R) = (m1_R) \cdot (n 1_R)$$ holds by the distributivity axiom ... ... "Can someone explain how the equality $$m(n1_R) = (m1_R) \cdot (n 1_R)$$ follows from the distributivity axiom

They key here is to use induction on $m$ or $n$. ;)
 
Euge said:
Let $f : \Bbb Z \to R$ be a ring homomoprhism. Define $a := f(1)$. Since $f$ is a $\Bbb Z$-homomorphism, $f(n) = f(n\cdot 1) = nf(1) = na$ for all $n\in \Bbb Z$. Choosing $a = 1_R$ forces $f(n) = \phi(n)$ for all $n \in \Bbb Z$; due to this choice, $f = \phi$.

Let me just note that if you're not allowed to assume that a ring homomorphism is a $\Bbb Z$-homomorphism, then use induction to show that $f(n) = nf(1)$ for all $n\in \Bbb Z$.
 
Euge said:
Let $f : \Bbb Z \to R$ be a ring homomoprhism. Define $a := f(1)$. Since $f$ is a $\Bbb Z$-homomorphism, $f(n) = f(n\cdot 1) = nf(1) = na$ for all $n\in \Bbb Z$. Choosing $a = 1_R$ forces $f(n) = \phi(n)$ for all $n \in \Bbb Z$; due to this choice, $f = \phi$.They key here is to use induction on $m$ or $n$. ;)
Thanks for the help Euge ...

Two clarifications ...

1. What is a $\Bbb Z$-homomorphism?

2. how do we justify the statement $$f(n\cdot 1) = nf(1)$$?

Hope you can help further ...

Thanks again ...

Peter
 
A $\Bbb Z$-homomorphism is a $\Bbb Z$-module homomorphism. I already gave the answer to 2. -- take a look back at my last post. [emoji2]
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
816
  • · Replies 2 ·
Replies
2
Views
1K