MHB Initial Objects in the Category Ring

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Initial Ring
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paolo Aluffi's book, Algebra: Chapter 0.

I have a question related to Aluffi's description of initial objects in the category ring ... ...

In Chapter III, Section 2. on the category ring, we read the following:View attachment 4480
View attachment 4481QUESTION 1

In the above text, we read the following:

" ... ... This ring homomorphism is unique, since it is determined by the requirement that $$\phi (1) = 1_R$$ and by the fact that $$\phi$$ preserves addition ... ... "Can someone please explain to me (precisely, rigorously and formally) why the requirement that $$\phi (1) = 1_R$$ and the fact that $$\phi$$ preserves addition imply that ring homomorphism is unique?

(Intuitively the above seems true ... but how do you show this exactly and precisely ... wonder if I am overthinking this matter ... )QUESTION 2

In the above text, we read the following:

" ... ... But $$\phi$$ is in fact a ring homomorphism, since $$\phi (1) = 1_R$$, and

$$\phi (mn) = (mn) 1_R = m(n1_R) = (m1_R) \cdot (n 1_R) = \phi (m) \cdot \phi (n)
$$

where the equality $$m(n1_R) = (m1_R) \cdot (n 1_R)$$ holds by the distributivity axiom ... ... "Can someone explain how the equality $$m(n1_R) = (m1_R) \cdot (n 1_R)$$ follows from the distributivity axiom

Help will be much appreciated ... ...

Peter
 
Last edited:
Physics news on Phys.org
Peter said:
QUESTION 1

In the above text, we read the following:

" ... ... This ring homomorphism is unique, since it is determined by the requirement that $$\phi (1) = 1_R$$ and by the fact that $$\phi$$ preserves addition ... ... "Can someone please explain to me (precisely, rigorously and formally) why the requirement that $$\phi (1) = 1_R$$ and the fact that $$\phi$$ preserves addition imply that ring homomorphism is unique?

(Intuitively the above seems true ... but how do you show this exactly and precisely ... wonder if I am overthinking this matter ... )

Let $f : \Bbb Z \to R$ be a ring homomoprhism. Define $a := f(1)$. Since $f$ is a $\Bbb Z$-homomorphism, $f(n) = f(n\cdot 1) = nf(1) = na$ for all $n\in \Bbb Z$. Choosing $a = 1_R$ forces $f(n) = \phi(n)$ for all $n \in \Bbb Z$; due to this choice, $f = \phi$.
QUESTION 2

In the above text, we read the following:

" ... ... But $$\phi$$ is in fact a ring homomorphism, since $$\phi (1) = 1_R$$, and

$$\phi (mn) = (mn) 1_R = m(n1_R) = (m1_R) \cdot (n 1_R) = \phi (m) \cdot \phi (n)
$$

where the equality $$m(n1_R) = (m1_R) \cdot (n 1_R)$$ holds by the distributivity axiom ... ... "Can someone explain how the equality $$m(n1_R) = (m1_R) \cdot (n 1_R)$$ follows from the distributivity axiom

They key here is to use induction on $m$ or $n$. ;)
 
Euge said:
Let $f : \Bbb Z \to R$ be a ring homomoprhism. Define $a := f(1)$. Since $f$ is a $\Bbb Z$-homomorphism, $f(n) = f(n\cdot 1) = nf(1) = na$ for all $n\in \Bbb Z$. Choosing $a = 1_R$ forces $f(n) = \phi(n)$ for all $n \in \Bbb Z$; due to this choice, $f = \phi$.

Let me just note that if you're not allowed to assume that a ring homomorphism is a $\Bbb Z$-homomorphism, then use induction to show that $f(n) = nf(1)$ for all $n\in \Bbb Z$.
 
Euge said:
Let $f : \Bbb Z \to R$ be a ring homomoprhism. Define $a := f(1)$. Since $f$ is a $\Bbb Z$-homomorphism, $f(n) = f(n\cdot 1) = nf(1) = na$ for all $n\in \Bbb Z$. Choosing $a = 1_R$ forces $f(n) = \phi(n)$ for all $n \in \Bbb Z$; due to this choice, $f = \phi$.They key here is to use induction on $m$ or $n$. ;)
Thanks for the help Euge ...

Two clarifications ...

1. What is a $\Bbb Z$-homomorphism?

2. how do we justify the statement $$f(n\cdot 1) = nf(1)$$?

Hope you can help further ...

Thanks again ...

Peter
 
A $\Bbb Z$-homomorphism is a $\Bbb Z$-module homomorphism. I already gave the answer to 2. -- take a look back at my last post. [emoji2]
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top