Inner Product

  • Thread starter alkhaldi20
  • Start date
  • #1
alkhaldi20
1
0
Hi everyone,

I need help with this problem. I just can't get it:

Let a,b,c,d,e and f be vectors such that \langle a,b \rangle=-4, \quad \langle a,c \rangle=-9, \quad \langle b,c \rangle=2, \quad b+c=d, \quad -4 a+3 b=e and -4 b+5 c=f. Compute the following inner products:

\langle b,a \rangle=
\langle a,d \rangle=
\langle e,c \rangle=
\langle a,f \rangle=
 

Answers and Replies

  • #2
slider142
1,015
70
Which question are you having trouble with? You have to apply the fact that the inner product is symmetric and linear in each argument. That is, for all vectors u, v, and w and all scalars a, we have:
[tex]
\langle u, v\rangle = \langle v, u\rangle
[/tex]
and
[tex]
\langle au + v, w\rangle = a\langle u, w\rangle + \langle v, w\rangle
[/tex]
 
  • #3
SammyS
Staff Emeritus
Science Advisor
Homework Helper
Gold Member
11,576
1,167
Hi everyone,

I need help with this problem. I just can't get it:

Let a,b,c,d,e and f be vectors such that [tex]\langle a,b \rangle=-4, \quad \langle a,c \rangle=-9, \quad \langle b,c \rangle=2, \quad b+c=d, \quad -4 a+3 b=e\ and -4 b+5 c=f\,.\ [/tex]

Compute the following inner products:

[tex]\langle b,a \rangle=[/tex]
[tex]\langle a,d \rangle=[/tex]
[tex]\langle e,c \rangle=[/tex]
[tex]\langle a,f \rangle=[/tex]
I put the [tex]\left[\text{tex}\right]\left[\text{/tex}\right][/tex] tags in for you.

[tex]\langle a,d \rangle=\langle a,b+c \rangle=\langle a,b \rangle+\langle a,c \rangle=\,[/tex] etc.
 
Last edited:

Suggested for: Inner Product

Replies
2
Views
3K
Replies
2
Views
1K
  • Last Post
Replies
2
Views
950
  • Last Post
Replies
2
Views
851
  • Last Post
Replies
3
Views
59K
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
4
Views
1K
Replies
7
Views
10K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
7
Views
10K
Top