- #1

- 1

- 0

## Main Question or Discussion Point

Hi everyone,

I need help with this problem. I just can't get it:

Let a,b,c,d,e and f be vectors such that \langle a,b \rangle=-4, \quad \langle a,c \rangle=-9, \quad \langle b,c \rangle=2, \quad b+c=d, \quad -4 a+3 b=e and -4 b+5 c=f. Compute the following inner products:

\langle b,a \rangle=

\langle a,d \rangle=

\langle e,c \rangle=

\langle a,f \rangle=

I need help with this problem. I just can't get it:

Let a,b,c,d,e and f be vectors such that \langle a,b \rangle=-4, \quad \langle a,c \rangle=-9, \quad \langle b,c \rangle=2, \quad b+c=d, \quad -4 a+3 b=e and -4 b+5 c=f. Compute the following inner products:

\langle b,a \rangle=

\langle a,d \rangle=

\langle e,c \rangle=

\langle a,f \rangle=