Inner Product

  • Thread starter alkhaldi20
  • Start date
  • #1
Hi everyone,

I need help with this problem. I just can't get it:

Let a,b,c,d,e and f be vectors such that \langle a,b \rangle=-4, \quad \langle a,c \rangle=-9, \quad \langle b,c \rangle=2, \quad b+c=d, \quad -4 a+3 b=e and -4 b+5 c=f. Compute the following inner products:

\langle b,a \rangle=
\langle a,d \rangle=
\langle e,c \rangle=
\langle a,f \rangle=
 

Answers and Replies

  • #2
1,013
70
Which question are you having trouble with? You have to apply the fact that the inner product is symmetric and linear in each argument. That is, for all vectors u, v, and w and all scalars a, we have:
[tex]
\langle u, v\rangle = \langle v, u\rangle
[/tex]
and
[tex]
\langle au + v, w\rangle = a\langle u, w\rangle + \langle v, w\rangle
[/tex]
 
  • #3
SammyS
Staff Emeritus
Science Advisor
Homework Helper
Gold Member
11,362
1,030
Hi everyone,

I need help with this problem. I just can't get it:

Let a,b,c,d,e and f be vectors such that [tex]\langle a,b \rangle=-4, \quad \langle a,c \rangle=-9, \quad \langle b,c \rangle=2, \quad b+c=d, \quad -4 a+3 b=e\ and -4 b+5 c=f\,.\ [/tex]

Compute the following inner products:

[tex]\langle b,a \rangle=[/tex]
[tex]\langle a,d \rangle=[/tex]
[tex]\langle e,c \rangle=[/tex]
[tex]\langle a,f \rangle=[/tex]
I put the [tex]\left[\text{tex}\right]\left[\text{/tex}\right][/tex] tags in for you.

[tex]\langle a,d \rangle=\langle a,b+c \rangle=\langle a,b \rangle+\langle a,c \rangle=\,[/tex] etc.
 
Last edited:

Related Threads on Inner Product

Replies
2
Views
3K
Replies
2
Views
943
Top