Inner Products in R2: Defined & Explained

  • Thread starter Thread starter corey2014
  • Start date Start date
corey2014
Messages
22
Reaction score
0
asdf
 
Last edited:
Physics news on Phys.org
What if you let

A=\left(\begin{array}{cc} <(1,0),(1,0)> & <(1,0),(0,1)>\\ <(0,1),(1,0)> & <(0,1),(0,1)>\end{array}\right)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top