MHB Integer Find x,y for $y^2+2y=x^4+20x^3+104x^2+40x+2003$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Integer
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Find all solutions in integers $x,y$ of the equation $y^2+2y= x^4+20x^3+104x^2 + 40x + 2003$
 
Mathematics news on Phys.org
kaliprasad said:
Find all solutions in integers $x,y$ of the equation $y^2+2y= x^4+20x^3+104x^2 + 40x + 2003-----(1)$
let $p=x^2+10x=x(x+10)-----(2)$
from (1) we have :$y(y+2)=p^2+4p+2003$
$\therefore (y+1)^2=p^2+4p+2004---(3)$
from $(2):x^2+10x-p=0---(4)$
for $x,y$ both are intgers we get :$p>0,$ and $p$ may take values from the following lists:
$11(1\times 11),24(2\times 12),39(3\times 13),----,119(7\times 17)----,n\times (n+10)$
from $(3) : p^2+4p+2004$ is a perfect square
we may assume $p^2+4p+2004=(p+10)^2\rightarrow p=119$
hence $(x,y)=(7,128) \, (7,-130)$
or $(x,y)=(-17,128) \, (-17,-130)$
 
Last edited:
Albert said:
let $p=x^2+10x=x(x+10)-----(2)$
from (1) we have :$y(y+2)=p^2+4p+2003$
$\therefore (y+1)^2=p^2+4p+2004---(3)$
from $(2):x^2+10x-p=0---(4)$
for $x,y$ both are intgers we get :$p>0,$ and $p$ may take values from the following lists:
$11(1\times 11),24(2\times 12),39(3\times 13),----,119(7\times 17)----,n\times (n+10)$
from $(3) : p^2+4p+2004$ is a perfect square
we may assume $p^2+4p+2004=(p+10)^2\rightarrow p=119$
hence $(x,y)=(7,128) \, (7,-130)$
or $(x,y)=(-17,128) \, (-17,-130)$

Though the ans is right but

we may assume $p^2+4p+2004=(p+10)^2\rightarrow p=119$
is a weak assumption and some solutions could have been missing
 
kaliprasad said:
Though the ans is right but

we may assume $p^2+4p+2004=(p+10)^2\rightarrow p=119$
is a weak assumption and some solutions could have been missing
in fact we can set:$p^2+4p+2004=(p+k)^2$
here $k$ must be even and $2< k \leq 44$, and $p=n(n+10), n\geq 1$
and we obtain :$p=n(n+10)=\dfrac {2004-k^2}{2k-4}---(*)$
the only solution for $(*)$ is $k=10, p=119$
 
Last edited:
My solution
Add 1 to both sides to get
$(y+1)^2 = x^4+20x^3+104x^2+40x+2004 = x^4+20x^3+ 104x^2+40x+ 4 + 2000 = (x^2+10x+2)^2 +2000$
or $(y+1)^2 - (x^2+10x+2)^2 = 2000$
for the above to have solution we need to have $(y+1)$ and $(x^2+10x+2)$ both should be even or odd and as $(x^2+10x+2) = (x+5)^2-23$ so
the $2^{nd}$ number with need to be 23 less than a perfect square.
so let us find (t,z) which are $(\pm501,\pm499),(\pm252,\pm248),(\pm129,\pm121),(\pm105,\pm95),(\pm60,\pm40),(\pm45,\pm5)$ out of which
only z = 121 which 23 less than is a perfect square
so we get
$y+1= \pm 129, (x+5) = \pm 12$ giving 4 solutions ($y=-130, x = - 17$), ($y= -130,x= 7$), ($y=128,x=7$),($y= 128, x= -17$)
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top