MHB Integer Find x,y for $y^2+2y=x^4+20x^3+104x^2+40x+2003$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Integer
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Find all solutions in integers $x,y$ of the equation $y^2+2y= x^4+20x^3+104x^2 + 40x + 2003$
 
Mathematics news on Phys.org
kaliprasad said:
Find all solutions in integers $x,y$ of the equation $y^2+2y= x^4+20x^3+104x^2 + 40x + 2003-----(1)$
let $p=x^2+10x=x(x+10)-----(2)$
from (1) we have :$y(y+2)=p^2+4p+2003$
$\therefore (y+1)^2=p^2+4p+2004---(3)$
from $(2):x^2+10x-p=0---(4)$
for $x,y$ both are intgers we get :$p>0,$ and $p$ may take values from the following lists:
$11(1\times 11),24(2\times 12),39(3\times 13),----,119(7\times 17)----,n\times (n+10)$
from $(3) : p^2+4p+2004$ is a perfect square
we may assume $p^2+4p+2004=(p+10)^2\rightarrow p=119$
hence $(x,y)=(7,128) \, (7,-130)$
or $(x,y)=(-17,128) \, (-17,-130)$
 
Last edited:
Albert said:
let $p=x^2+10x=x(x+10)-----(2)$
from (1) we have :$y(y+2)=p^2+4p+2003$
$\therefore (y+1)^2=p^2+4p+2004---(3)$
from $(2):x^2+10x-p=0---(4)$
for $x,y$ both are intgers we get :$p>0,$ and $p$ may take values from the following lists:
$11(1\times 11),24(2\times 12),39(3\times 13),----,119(7\times 17)----,n\times (n+10)$
from $(3) : p^2+4p+2004$ is a perfect square
we may assume $p^2+4p+2004=(p+10)^2\rightarrow p=119$
hence $(x,y)=(7,128) \, (7,-130)$
or $(x,y)=(-17,128) \, (-17,-130)$

Though the ans is right but

we may assume $p^2+4p+2004=(p+10)^2\rightarrow p=119$
is a weak assumption and some solutions could have been missing
 
kaliprasad said:
Though the ans is right but

we may assume $p^2+4p+2004=(p+10)^2\rightarrow p=119$
is a weak assumption and some solutions could have been missing
in fact we can set:$p^2+4p+2004=(p+k)^2$
here $k$ must be even and $2< k \leq 44$, and $p=n(n+10), n\geq 1$
and we obtain :$p=n(n+10)=\dfrac {2004-k^2}{2k-4}---(*)$
the only solution for $(*)$ is $k=10, p=119$
 
Last edited:
My solution
Add 1 to both sides to get
$(y+1)^2 = x^4+20x^3+104x^2+40x+2004 = x^4+20x^3+ 104x^2+40x+ 4 + 2000 = (x^2+10x+2)^2 +2000$
or $(y+1)^2 - (x^2+10x+2)^2 = 2000$
for the above to have solution we need to have $(y+1)$ and $(x^2+10x+2)$ both should be even or odd and as $(x^2+10x+2) = (x+5)^2-23$ so
the $2^{nd}$ number with need to be 23 less than a perfect square.
so let us find (t,z) which are $(\pm501,\pm499),(\pm252,\pm248),(\pm129,\pm121),(\pm105,\pm95),(\pm60,\pm40),(\pm45,\pm5)$ out of which
only z = 121 which 23 less than is a perfect square
so we get
$y+1= \pm 129, (x+5) = \pm 12$ giving 4 solutions ($y=-130, x = - 17$), ($y= -130,x= 7$), ($y=128,x=7$),($y= 128, x= -17$)
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top