jj7964130
- 2
- 0
Homework Statement
Prove or disprove: If n is a positive integer, then n=p+a^2 where
- a\in\mathbb{Z}
- p is prime or p=1
Homework Equations
Prime is defined such that if p prime and p divides the product ab, then either p divides a or p divides b. Also, primes are irreducible.
Additionally, the fundamental theorem of arithmetic that defines all integers as a unique product of positive primes may be useful.
The Attempt at a Solution
Originally, I had found 25 as a counterexample that cannot be written as the sum of a prime and a square. Then the problem was clarified to include negative primes, and I'm a bit lost as to where I should start. Namely, I'm not sure if I should be working towards proving or disproving the argument. If anyone's worked through this already and could send me some guidance in the right direction, it would be appreciated.