All I can do for you is find the poles and evaluate the residues. I am unable to build a complete solution that works for all values of parameters, when attempting to select a contour and see if the imaginary parts go to zero and so forth.
This is the residue of the 5th order pole at 0:
<br />
\frac{f^4 (M-i n)^4-24 f^2 \left(2 z^2-1\right) (M-i n)^2+24<br />
\left(16 z^4-16 z^2+3\right)}{24 f^4}<br />
Here are the four poles of the denominator which due not occur at 0:
<br />
\left\{-\sqrt{f^2 \left(1-2 z^2\right)-2 \sqrt{f^4 z^2<br />
\left(z^2-1\right)}},\sqrt{f^2 \left(1-2 z^2\right)-2 \sqrt{f^4<br />
z^2 \left(z^2-1\right)}},<br />
<br />
-\sqrt{\left(1-2 z^2\right) f^2+2<br />
\sqrt{f^4 z^2 \left(z^2-1\right)}},\sqrt{\left(1-2 z^2\right)<br />
f^2+2 \sqrt{f^4 z^2 \left(z^2-1\right)}}\right\}<br />
Here are the four residues of the function corresponding to the four poles above:
<br />
<br />
\left\{\frac{e^{(M-i n) \sqrt{f^2 \left(1-2 z^2\right)-2 \sqrt{f^4<br />
z^2 \left(z^2-1\right)}}} f^4}{8 \sqrt{f^4 z^2<br />
\left(z^2-1\right)} \left(\left(2 z^2-1\right) f^2+2 \sqrt{f^4<br />
z^2 \left(z^2-1\right)}\right)^3},<br />
<br />
\frac{e^{-(M-i n) \sqrt{f^2<br />
\left(1-2 z^2\right)-2 \sqrt{f^4 z^2 \left(z^2-1\right)}}}<br />
f^4}{8 \sqrt{f^4 z^2 \left(z^2-1\right)} \left(\left(2<br />
z^2-1\right) f^2+2 \sqrt{f^4 z^2<br />
\left(z^2-1\right)}\right)^3},<br />
<br />
\frac{e^{(M-i n) \sqrt{\left(1-2<br />
z^2\right) f^2+2 \sqrt{f^4 z^2 \left(z^2-1\right)}}} f^4}{8<br />
\sqrt{f^4 z^2 \left(z^2-1\right)} \left(\left(1-2 z^2\right)<br />
f^2+2 \sqrt{f^4 z^2<br />
\left(z^2-1\right)}\right)^3},<br />
<br />
\frac{e^{-(M-i n) \sqrt{\left(1-2<br />
z^2\right) f^2+2 \sqrt{f^4 z^2 \left(z^2-1\right)}}} f^4}{8<br />
\sqrt{f^4 z^2 \left(z^2-1\right)} \left(\left(1-2 z^2\right)<br />
f^2+2 \sqrt{f^4 z^2 \left(z^2-1\right)}\right)^3}\right\}<br />
<br />
The location of the poles depends in general on your parameters m, n , z etc., so I cannot give the final result unless you supply assumptions on the parameters, for example if M, N,f, and zeta are real and positive, we might be able to narrow it down (probably not). You mentioned integrating numerically, and that would go fine since this function is not ill-behaved, except mildy with respect to analytical methods.
Edit: Perhaps someone can help me get these LaTeX monsters to display correctly, on our precious forum of limited width.