Integral and differential of summation

Jhenrique
Messages
676
Reaction score
4
The following identities are true?
$$\frac{d}{dx} \sum_{u_0}^{u_1}f(x,u)\Delta u = \sum_{u_0}^{u_1}\frac{d}{dx}f(x,u)\Delta u$$ $$\int \sum_{u_0}^{u_1}f(x,u)\Delta u dx = \sum_{u_0}^{u_1}\int f(x,u)dx\Delta u$$
 
Physics news on Phys.org
As long as (u_1- u_0)/\Delta x is finite, those can be proved by induction.
 
HallsofIvy said:
As long as (u_1- u_0)/\Delta x is finite, those can be proved by induction.

I didn't understand...
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top