- #1

Wu Xiaobin

- 27

- 0

The joint probability density function shows as follows:

[itex]f(\xi_1,\xi_2)=\frac{1-\eta_1^2-\eta_2^2-\eta_3^2}{4\pi}[\frac{1}{(1-\eta_1\xi_1-\eta_2\xi_2-\eta_3\sqrt{1-\xi_1^2-\xi_2^2})^2}+\frac{1}{(1-\eta_1\xi_1-\eta_2\xi_2+\eta_3\sqrt{1-\xi_1^2-\xi_2^2})^2}][/itex]

with the domain of integration [itex]0\leq(\xi_1^2+\xi_2^2\leq1)[/itex]

And I want to integrate the above joint probability density function to obtain [itex]f(\xi_1)[/itex]