Gyges
- 5
- 0
Homework Statement
[/B]
I'm trying to show that,
\phi(x')=b\frac{\sin kx'}{k}+a\cos kx'+\int_{0}^{x'}\frac{\sin k(x-x')}{k} f(x)dx
is the solution of,
\frac{d^{2}}{dx'^{2}}\phi(x')+k^{2}\phi(x')=f(x')dx where 0 \leq x'<\infty.
2. Homework Equations
N/A
The Attempt at a Solution
[/B]
If we consider one dimensional Schrodinger equation with potential U(x)
(\frac{d^{2}}{dx^{2}} + k^{2})\phi(x)=U(x)\phi(x)
Supposing that \phi(0)=a~~ and~~ \phi'(0)=b are given
Solution for x>0
L\phi(x)=f(x)~~ with~~ L=\frac{d^{2}}{dx^{2}}+k^{2}
\int_{0}^{\infty} g(x,x')L\phi(x)=\int_{0}^{\infty} g(x,x')f(x)d(x)
\int_{0}^{\infty} (Lg(x,x'))\phi(x)dx+g(x,x')\phi'(x)|_{x=0}^{x=\infty}-\frac{dg(x,x')}{d(x)}\phi(x)|_{x=0}^{x=\infty}=\int_{0}^{\infty}g(x,x')f(x)dx
g(\infty,x')=0 ~~and~~ \frac{dg}{dx}(\infty,x')=0
Lg(x,x')=\delta(x-x')
\phi(x')=bg(0,x')-a\frac{dg}{dx}(0,x')+\int_{0}^{\infty} g(x,x')f(x)dx
Boundry conditions are given by
(\frac{d^{2}}{dx^{2}} + k^{2})g(x,x')=\delta(x-x') ~~on~~ x\in(0,\infty)~~ with~~ x'(\in0,\infty)
Boundry Condition 1
g(\infty,x')=0
Boundry Condition 2
\frac{dg}{dx}(\infty,x')=0
For x<x’
g(x,x')=A\sin kx + B\cos kx
For x>x’
g(x,x')=C\sin kx + D\cos kx
If we apply boundry conditions then
C=D=0
so
g(x,x')=0~~for x>x'
\frac{dg}{dx}(x'+\xi,x')-\frac{dg}{dx}(x'-\xi,x')=1
g(x'+\xi,x')=g(x'-\xi,x')
\xi\rightarrow0
\begin{cases}A\sin kx'+B\cos kx'=0\\-A\cos kx'+B\sin kx'=\frac{1}{k}\end{cases}
so
A=\frac{-\cos kx'}{k}
B=\frac{\sin kx'}{k}
Then Green Function found
g(x,x')=\begin{cases}\frac{\sin k(x-x')}{k} ~ , ~x<x' \\0 ~,~ x>x'\end{cases}
Then
\phi(x')=bg(0,x')-a\frac{dg}{dx}(0,x')+\int_{0}^{\infty} g(x,x')f(x)dx
becomes
\phi(x')=b\frac{\sin kx'}{k}+a\cos kx'+\int_{0}^{x'}\frac{\sin k(x-x')}{k} f(x)dx
Now finally I should show that this is the solution of
\frac{d^{2}}{dx'^{2}}\phi(x')+k^{2}\phi(x')=f(x')dx ~~ where ~~ 0 \leq x'<\infty