Integral equivalent to fitting a curve to a sum of functions

admixtus
Messages
2
Reaction score
0
Hello,

I am searching for some kind of transform if it is possible, similar to a Fourier transform, but for an arbitrary function.

Sort of an inverse convolution but with a kernel that varies in each point.

Or, like I say in the title of this topic a sort of continuous equivalent of fitting a curve to a sum of functions.

For example if I want to use Gaussians, I want to reproduce a function F(x)

As:

F(x) = \int \frac{f(y)}{\sqrt{4\pi t(y)}}e^{-\frac{(x-y)^2}{4 t(y)}} dy

Notice how t is a function of y.
This is easy for a finite sum of Gaussians with linear regression, but I'm searching for a continuous equivalent.

The closest thing that I found for Gausses is a Weierstrass transform. But the 'standard deviation' of the gausses doesn't vary in each point.

There are a ton of subjects that come close (linear regression, inverse convolution, Weierstrass transform,..) but they either are discrete or lack the variability of the convoluting kernel.

Does someone know a mathematical technique that can do this? Or know in what direction I have to look? Thanks!
 
Mathematics news on Phys.org
I'm not quite clear on what is given. Obviously F is given, and you want to find f, but how about t? Is t(y) a given function?
 
haruspex said:
I'm not quite clear on what is given. Obviously F is given, and you want to find f, but how about t? Is t(y) a given function?

Yes, t(y) and f(y) are functions that I want fo find, yes. Maybe I should have written it explicitly like that instead of implying it by saying the the kernel was variable.
 
admixtus said:
Yes, t(y) and f(y) are functions that I want fo find, yes. Maybe I should have written it explicitly like that instead of implying it by saying the the kernel was variable.
From my reading of the subject (totally new to me until I saw your post) the Weierstrass transform is exactly that, a transform, so is, generally speaking, invertible. This means there is not enough information to find t. Your mission would make more sense if t(y) were given. Am I missing something?

Not sure if this is what you are after, but look at the discussion of heteroscedastic Gaussian Processes at https://www.cs.cmu.edu/~andrewgw/andrewgwthesis.pdf
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top