MHB Integral of Sin over Exponential: Solutions

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral $$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx$$ can be transformed using the substitution $$t = 2 \pi x$$, leading to a series representation involving the Riemann zeta function. The result is expressed as $$\sum_{k=1}^{\infty}\frac{a}{k^2+a^2}$$, valid for $$|a|<2\pi$$. Additionally, a Fourier series expansion of the function $$\cosh(ax)$$ provides another method to compute the series, yielding a specific formula involving $$\coth(\pi a)$$. Complex analysis techniques are also discussed, highlighting the relationship between the series and residues. The discussion emphasizes the potential for further exploration of the integral's solutions.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx $$
 
Mathematics news on Phys.org
The integral can be solved by contour integration but I made a mistake somewhere , anyways the following approach is somehow a transformation to the contour to famous one .

$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx $$

Let $$t = 2 \pi x$$

$$
\begin{align*}

\frac{1}{2\pi }\int^{\infty}_0 \frac{\sin \left(\frac{at}{2\pi } \right) }{e^{t}-1} \, dt &=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n}{\Gamma(2n+2)}\int^{\infty}_0 \frac{ \left(\frac{at}{2\pi } \right)^{2n+1} }{e^{t}-1} \, dt \\
\\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}}{\Gamma(2n+2)}\int^{\infty}_0 \frac{t^{2n+1} }{e^{t}-1} \, dt \\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}\frac{(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1} \Gamma (2n+2)\zeta(2n+2)}{\Gamma(2n+2)} \\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\zeta(2n+2)\\

&=\frac{1}{2\pi }\sum^{\infty}_{n =0}(-1)^n \left(\frac{a}{2\pi } \right)^{2n+1}\sum_{k=1}^{\infty} \frac{1}{k^{2n+2}}\\

&=\frac{1}{2\pi }\sum_{k=1}^{\infty}\frac{1}{k^2}\sum^{\infty}_{n =0}(-1)^n \frac{\left(\frac{a}{2\pi } \right)^{2n+1} }{k^{2n}}\\

&=\frac{a}{4\pi^2 } \sum_{k=1}^{\infty} \frac{1}{k^2} \sum^{\infty}_{n =0}\left( -\frac{a^2}{4\pi^2 k^2 } \right)^n \\

&=\frac{a}{4\pi^2 }\sum_{k=1}^{\infty}\frac{1}{k^2(1+\frac{a^2}{4\pi^2 k^2})} \\

&= \sum_{k=1}^{\infty}\frac{a}{k^2+a^2}\\

\end{align*}$$

$$\int^{\infty}_0 \frac{\sin(ax)}{e^{2\pi x}-1} \, dx = \sum_{k=1}^{\infty}\frac{a}{k^2+a^2} $$If anyone wants to try this sum , otherwise I will solve it in the next thread .
 
My solution is based on that $$|a|<2 \pi $$ . I will try to find a general solution.
 
The series...$$\sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}}\ (1)$$... can be computed finding the Fourier series expansion of the function $\cosh ax$ in $[-\pi,\pi]$ obtaining... $$\cosh ax = \frac{\sinh \pi a}{\pi\ a} + 2\ a\ \frac{\sinh \pi a}{\pi}\ \sum_{n=1}^{\infty} \frac{\cos n \pi}{n^{2} + a^{2}}\ \cos n x\ (2)$$

... and setting in (2) $x=\pi$ we obtain...

$$ \sum_{n=1}^{\infty} \frac{a}{n^{2} + a^{2}} = \frac{\pi}{2} (\coth \pi a - \frac{1}{\pi\ a})\ (3)$$

Kind regards

$\chi$ $\sigma$
 
The other way is using complex analysis

$$\sum_{k=-\infty}^{\infty }\frac{a}{k^2+a^2} =- \text{Res}\left(\frac{a \pi \cot ( \pi z) }{z^2+a^2} ;\pm ai \right)$$$$\sum_{k \leq -1}\frac{a}{k^2+a^2}+ \frac{1}{a}+ \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \cot(a \pi i)}{2ai}-\frac{\pi \cot(-a \pi i)}{-2ai}$$$$\frac{1}{a}+ 2 \sum_{k \geq 1}\frac{a}{k^2+a^2}=- \frac{\pi \coth(a \pi i)}{2ai}-\frac{\pi \cot(a\pi i )}{2ai}=-2\frac{\pi \cot(a\pi i )}{2ai} = \frac{\pi \coth( \pi a) }{a} $$

$$ \sum_{k \geq 1}\frac{a}{k^2+a^2}=\frac{\pi \coth( \pi a) }{2a} -\frac{1}{2a}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top