XtremePhysX
- 92
- 0
Homework Statement
Evaluate the following integrals:
Homework Equations
(1)\int_{0}^{\infty }\frac{cos(x)}{1+(x)^{2}}dx
(2)\int_{0}^{\infty}e^{-x^2}dx
(3)\int_{0}^{1}\log\log\left(\frac{1}{x}\right)\,dx
(4)\int_{0}^{\infty}\frac{x\,dx}{e^x-1}
(5)\int_{-\infty}^{\infty}\frac{\sin(x)\,dx}{x}
The Attempt at a Solution
I know how to do the second one, so please help me with the rest:
(2) Let I = \int_{0}^{\infty }e^{-x^{2}}dx then we have by the square of an integral:
I^{2}=\left ( \int_{0}^{\infty }e^{-x^{2}}dx \right )\left ( \int_{0}^{\infty }e^{-y^{2}}dy \right ) = \int_{0}^{\infty }\int_{0}^{\infty }e^{-x^{2}-y^{2}}dydx
Shifting to polar coordinates:
\int_{0}^{\frac{\pi }{2}}\int_{0}^{\infty }e^{-r^{2}}rdrd\theta
For the interior integral, we use the transformation:
u=r^{2}, \frac{du}{2}=rdr to obtain:
\frac{1}{2}\int_{0}^{\infty }e^{-u}du = -\frac{1}{2}\left [ e^{-u} \right ]\infty to 0 = \frac{1}{2}
Plugging this into our integral, we're left with:
I^{2}=\frac{1}{2}\int_{0}^{\frac{\pi }{2}}d\theta = \frac{\pi }{4}
By taking the square root of both sides, we have the answer:
I=\int_{0}^{\infty }e^{-x^{2}}dx=\frac{\sqrt{\pi }}{2}