- 1,801
- 1,199
benorin said:show that
\int\int\int \left( \vec{a}\cdot\vec{r}\right) \left( \vec{b}\cdot\vec{r}\right) \left( \vec{c}\cdot\vec{r}\right) dV =\frac{ \left( \alpha\beta\gamma\right) ^2}{8\left| \vec{a}\cdot\left( \vec{b}\times\vec{c}\right) \right|}
(this one comes out of Stewart, Calculus 4th ed., ch. 15 Problems Plus #4 on pg. 1038).
Enjoy![]()
The integral is scalar. a.(bxc) is the only scalar formed from three vectors. But this scalar is antisymmetric, while the integral is symmetric. So, we must have |a.(bxc)|.
Thus, we can write,
\int (\vec{a}.\vec{r})(\vec{b}.\vec{r})(\vec{c}.\vec{r}) dV=A[\left| \vec{a}\cdot\left( \vec{b}\times\vec{c} \right) \right|]^n
now take,
\vec{a}=\hat{i}|\vec{a}|, \vec{b}=\hat{j}|\vec{b}|, and, \vec{c}=\hat{k}|\vec{c}|
and find;
n=-1 and A=\frac{(\alpha\beta\gamma)^2}{8}
regards
sam
Last edited:
, are you a comedian by any chance? I must admit, you made me laugh