MHB Integrate sqrt(1 + x^2) / x: Trig Substitution

Click For Summary
To integrate sqrt(1 + x^2) / x, several methods are discussed, including trigonometric substitution and algebraic manipulation. One approach involves letting x = tan(θ), which simplifies the integral to sec^3(θ) / tan(θ). Another method uses the substitution u^2 = 1 + x^2, leading to a more straightforward integration process. The final solutions include expressions involving logarithmic terms and the square root function. Overall, various techniques yield equivalent results, demonstrating the flexibility in solving this integral.
annie122
Messages
51
Reaction score
0
how do u integrate sqrt(1 + x^2) / x??
i reduced this to sec^3(u)/tan(u) but how do i go from here??
 
Physics news on Phys.org
Re: trig substitution

You can do it without trig substitution.

$$ \int \frac{\sqrt{1+x^{2}}}{x} \ dx $$

Let $u^{2} = 1+x^{2}$.

Then

$$\int \frac{\sqrt{1+x^{2}}}{x} \ dx = \int \frac{u^{2}}{x^{2}} \ du = \int \frac{u^{2}}{u^{2}-1} \ du$$

$$ = \int \Big( 1 + \frac{1}{u^{2}-1} \Big) \ du = \int \Big( 1 + \frac{1}{2(u-1)} - \frac{1}{2(u+1)} \Big) \ du$$

$$ = u + \frac{\ln(u-1)}{2} - \frac{\ln(u+1)}{2} + C$$

$$ = \sqrt{1+x^{2}} + \frac{1}{2} \ln (\sqrt{1+x^{2}}-1) - \frac{1}{2} \ln(\sqrt{1+x^{2}}+1) + C $$
 
Yuuki said:
how do u integrate sqrt(1 + x^2) / x??
i reduced this to sec^3(u)/tan(u) but how do i go from here??
I would be inclined to do this like Random Variable but since you got this far, sec(u)= 1/cos(u) and tan(u)= sin(u)/cos(u) so that \frac{sec^3(u)}{tan(u)}= \frac{1}{cos^3(u)}\frac{cos(u)}{sin(u)}= \frac{1}{sin(u)cos^2(u)}which has sine to an odd power. We can multiply both numerator and denominator by sin(x) to get \frac{sin(x)}{sin^2(x)cos^2(x)}= \frac{sin(x)}{(1- cos^2(x))cos^2(x)}

Let v= cos(x) so that dv= -sin(x)dx and the integrand becomes \frac{-dv}{(1- v^2)v^2} which can be integrated using "partial fractions".
 
Last edited by a moderator:
Hello, Yuuki

I found an approach.
I'm sure someone will have a better way.

\int \frac{\sqrt{1 + x^2}}{x}\,dx

\text{Let }\,x \,=\,\tan\theta \quad\Rightarrow\quad dx \,=\,\sec^2\!\theta\,d\theta

\text{I reduced this to: }\:\int \frac{\sec^3\!\theta}{\tan\theta}\,d\theta . Good!
\text{Multiply by }\frac{\tan\theta}{\tan\theta}:\;\int\frac{\sec^3 \!\theta\tan\theta}{\tan^2\!\theta}\,d\theta

. . =\;\int\frac{\sec^3\!\theta\tan \theta\,d\theta}{\sec^2\!\theta-1} \;=\;\int\frac{\sec^2\!\theta}{\sec^2\!\theta-1}( \sec\theta\tan\theta\,d\theta)\text{Let }u \,=\,\sec\theta \quad\Rightarrow\quad du \,=\,\sec\theta \tan\theta\,d\theta

\text{We have: }\:\int \frac{u^2}{u^2-1}\,du \;=\;\int\left(1 + \frac{1}{u^2-1}\right)du

. . . . . . =\;u + \frac{1}{2}\ln\left|\frac{u-1}{u+1}\right|+C

Now back-substitute . . .
 
Another solution:

\int {\frac{{\sqrt {1 + {x^2}} }}{x}\,dx} = \int {\frac{{1 + {x^2}}}{{x\sqrt {1 + {x^2}} }}\,dx} = \int {\frac{{dx}}{{x\sqrt {1 + {x^2}} }}} + \int {\frac{x}{{\sqrt {1 + {x^2}} }}\,dx} ,

second integral is easy, but if we want to avoid partial fractions for the first one, put $x=\dfrac1t$ and the integral becomes
- \int {\frac{{dt}}{{\sqrt {1 + {t^2}} }}} = - \ln \left| {t + \sqrt {1 + {t^2}} } \right| + {k_1}.

Finally,

\int {\frac{{\sqrt {1 + {x^2}} }}{x}\,dx} = - \ln \left| {\frac{1}{x} + \sqrt {1 + \frac{1}{{{x^2}}}} } \right| + \sqrt {1 + {x^2}} + k.
 

Similar threads

Replies
6
Views
2K
Replies
6
Views
3K
Replies
8
Views
2K
Replies
1
Views
2K
Replies
8
Views
3K
Replies
5
Views
2K
Replies
3
Views
2K