synkk
- 216
- 0
Using cos^4\theta - sin^4\theta = cos2\theta and cos^4\theta + sin^4\theta = 1 - \frac{1}{2}sin^22\theta
evaluate:
(i) \displaystyle \int_0^{\frac{\pi}{2}} cos^4\theta \ d\theta
adding the two identities given I get: 2cos^4\theta = cos2\theta + 1 - \frac{1}{4} + \frac{1}{4} cos4\theta cos^4\theta = \frac{1}{8}\left (4cos2\theta + 3 + cos4\theta \right )
integrating this I get the correct answer
(ii) \displaystyle \int_0^{\frac{\pi}{2}} cos^6\theta \ d\theta
from the (i) cos^4\theta = \frac{1}{8}\left( 4cos2\theta + 3 + cos4\theta \right )
so cos^6\theta = \frac{1}{8}(4cos^2\theta cos(2\theta) +3cos^2\theta + cos^2\theta cos4\theta)
using the double angle formula I simplify down to:
cos^6\theta = \left(4\left( \dfrac{cos2\theta + 1}{2} \right)cos2\theta + 3\left(\dfrac{cos2\theta + 1}{2} \right) + cos^2\theta cos4\theta \right)
cos^6\theta = \left(cos4\theta + 1 + \frac{7}{2} cos2\theta + \frac{3}{2} + cos^2\theta cos4\theta \right )
considering cos^2\theta cos4\theta
= cos^2\theta(2(2cos^2\theta - 1)^2 - 1) = 8cos^6\theta - 8 cos^4\theta + cos^2\theta
so:
cos^6\theta = \frac{1}{8}\left(cos4\theta + \frac{5}{2} + \frac{7}{2}cos2\theta + 8cos^6\theta - 8 cos^4\theta + cos^2\theta \right)
then the cos^6\theta cancel out :S, any help?
(I've solved this problem using the reduction formula and de moivres theorem but I don't see where I'm going wrong here)
evaluate:
(i) \displaystyle \int_0^{\frac{\pi}{2}} cos^4\theta \ d\theta
adding the two identities given I get: 2cos^4\theta = cos2\theta + 1 - \frac{1}{4} + \frac{1}{4} cos4\theta cos^4\theta = \frac{1}{8}\left (4cos2\theta + 3 + cos4\theta \right )
integrating this I get the correct answer
(ii) \displaystyle \int_0^{\frac{\pi}{2}} cos^6\theta \ d\theta
from the (i) cos^4\theta = \frac{1}{8}\left( 4cos2\theta + 3 + cos4\theta \right )
so cos^6\theta = \frac{1}{8}(4cos^2\theta cos(2\theta) +3cos^2\theta + cos^2\theta cos4\theta)
using the double angle formula I simplify down to:
cos^6\theta = \left(4\left( \dfrac{cos2\theta + 1}{2} \right)cos2\theta + 3\left(\dfrac{cos2\theta + 1}{2} \right) + cos^2\theta cos4\theta \right)
cos^6\theta = \left(cos4\theta + 1 + \frac{7}{2} cos2\theta + \frac{3}{2} + cos^2\theta cos4\theta \right )
considering cos^2\theta cos4\theta
= cos^2\theta(2(2cos^2\theta - 1)^2 - 1) = 8cos^6\theta - 8 cos^4\theta + cos^2\theta
so:
cos^6\theta = \frac{1}{8}\left(cos4\theta + \frac{5}{2} + \frac{7}{2}cos2\theta + 8cos^6\theta - 8 cos^4\theta + cos^2\theta \right)
then the cos^6\theta cancel out :S, any help?
(I've solved this problem using the reduction formula and de moivres theorem but I don't see where I'm going wrong here)
Last edited: