Deathfish
- 80
- 0
Homework Statement
e∫^P(x)
∫\frac{x-2}{x(x-1)}dx
The Attempt at a Solution
so i split it into
∫\frac{x-2}{x(x-1)}dx
= ∫\frac{2x-1}{x^2-x}dx - ∫\frac{x+1}{x^2-x}dx
= ln(x2-x) - ∫\frac{x}{x^2-x} - ∫(x2-x)-1
= ln(x2-x) - ln(x-1) - ∫(x2-x)-1
ok. having problems working out ∫(x2-x)-1dx
tried many ways but i keep ending up with the original integral.
u=x-1 --> du=-x-2
dv= (x-1)-1dx --> v=ln(x-1)
gives me (\frac{1}{x})ln(x-1) + ∫\frac{ln(x-1)}{x^2}dx
when i work this out
∫\frac{ln(x-1)}{x^2}dx
u=ln(x-1) --> du=\frac{1}{x-1}
dv=x-2dx --> v=-x-1
i get
∫\frac{ln(x-1)}{x^2}dx = \frac{-ln(x-1)}{x} + ∫(x2-x)-1
which is the same integral and above and i get no solution.
Need help...