cqfd
- 11
- 0
I am encountering a paradox when calculating the integral ##\int sin(x)\cos(x)\,dx## with integration by parts:
Defining ##u = sin(x), v' = cos(x)##:
##\int sin(x)cos(x) dx = sin^2(x) - \int cos(x) sin(x) dx##
##\Leftrightarrow \int sin(x) * cos(x) dx = +1/2*sin^2(x)##.
On the other hand, defining ##u = cos(x), v' = sin(x)##:
##\int sin(x)cos(x) dx = -cos^2(x) - \int cos(x) sin(x) dx##
##\Leftrightarrow \int sin(x) * cos(x) dx = -1/2*cos^2(x)##.
##1/2*sin^2(x) \neq -1/2*cos^2(x)##, and I know that the second one is the correct one. But I can't find an error in my upper calculation. Does somebody see the error I made?
Thanks!
Defining ##u = sin(x), v' = cos(x)##:
##\int sin(x)cos(x) dx = sin^2(x) - \int cos(x) sin(x) dx##
##\Leftrightarrow \int sin(x) * cos(x) dx = +1/2*sin^2(x)##.
On the other hand, defining ##u = cos(x), v' = sin(x)##:
##\int sin(x)cos(x) dx = -cos^2(x) - \int cos(x) sin(x) dx##
##\Leftrightarrow \int sin(x) * cos(x) dx = -1/2*cos^2(x)##.
##1/2*sin^2(x) \neq -1/2*cos^2(x)##, and I know that the second one is the correct one. But I can't find an error in my upper calculation. Does somebody see the error I made?
Thanks!