Integrating Trigonometric Functions with Substitution

darioe
Messages
5
Reaction score
0

Homework Statement



Integrate at interval [0,T] (T and k are given real numbers) the

2. Relevant equation

_{0}^{T}\int \frac{sin(p)}{\sqrt{k+p}}\ dp

The Attempt at a Solution



\ Using\ substitution\ u\ =\ tan(p/2),\ results\ as\ :\ p\ =\ 2*arctan(u)\ \ ;\ \ dp\ =\ \frac{2}{1+u^2}\ du\ ;\

sin(p)\ =\ \frac{2*u}{1+u^2} ;\ cos(p)\ =\ \frac{1-u^2}{1+u^2} ;\

_{0}^{T}\int \frac{sin(p)}{\sqrt{k+p}}\ dp \ \ =\ _{0}^{2*arctan(T)}\int \frac{2*u*2}{(1+u^2)\ *\ \sqrt{k+2*arctan(u)}\ *\ (1+u^2)}\ du

\ ¿\ Could\ someone\ get\ a\ better\ result\ ?

(maybe with the substitution u = 2* sin(p) )


...
 
Physics news on Phys.org
See e.g. 16 http://mathworld.wolfram.com/FresnelIntegrals.html"
 
Last edited by a moderator:
Should be:

<br /> _{0}^{T}\int \frac{sin(p)}{\sqrt{k+p}}\ dp \ \ =\ _{0}^{tan(T/2)}\int \frac{2*u*2}{(1+u^2)\ *\ \sqrt{k+2*arctan(u)}\ *\ (1+u^2)}\ du<br />

but it looks like I could have to know about Fresnel Integrals. Thank you for the help.


.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top