Integration by Partial Fractions - Long Problem

Click For Summary

Homework Help Overview

The problem involves integrating the function \(\int \frac{{2s + 2}}{{(s^2 + 1)(s - 1)^3}} ds\) using partial fraction decomposition. Participants are exploring the process of finding coefficients for the partial fractions and discussing the integration steps involved.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss splitting the integrand into partial fractions and finding coefficients for each term. There are attempts to equate coefficients and solve for \(A\), \(B\), \(C\), \(D\), and \(E\). Some participants question the method of equating coefficients and suggest alternative values for \(s\) to simplify calculations.

Discussion Status

The discussion is ongoing, with participants providing insights into the coefficient determination process. There is recognition of potential errors in the original poster's calculations, and suggestions for alternative approaches are being explored.

Contextual Notes

Participants note that using specific values for \(s\) can simplify the process of finding coefficients, and there is an acknowledgment of discrepancies between the original poster's results and those from a reference book.

RedBarchetta
Messages
49
Reaction score
1

Homework Statement


<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}ds} <br />

The Attempt at a Solution



This is a long one...First, I split the integrand into partial fractions and find the coefficients:

<br /> \begin{gathered}<br /> \frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }} = \frac{{As + B}}<br /> {{s^2 + 1}} + \frac{C}<br /> {{s - 1}} + \frac{D}<br /> {{(s - 1)^2 }} + \frac{E}<br /> {{(s - 1)^3 }} \hfill \\<br /> 2s + 2 = (As + B)(s - 1)^3 + C(s^2 + 1)(s - 1)^2 + D(s^2 + 1)(s - 1) + E(s^2 + 1) \hfill \\<br /> 2s + 2 = (As + B)(s^3 - 3s^2 + 3s - 1) + C(s^4 - 2s^3 + 2s^2 - 2s + 1) + D(s^3 - s^2 + s - 1) + E(s^2 + 1) \hfill \\ <br /> \end{gathered} <br />
 
Physics news on Phys.org
Part 2:

Now find the coefficients. I suppose you can use a calculator if you want to check for these. :smile:

<br /> \begin{gathered}<br /> s^4 :A + C = 0 \hfill \\<br /> s^3 :B - 3A - 2C + D = 0 \hfill \\<br /> s^2 :3A - 3B + 2C - D = 0 \hfill \\<br /> s^1 :3B - A - 2C + D = 2 \hfill \\<br /> s^0 :C - B - D + E = 2 \hfill \\ <br /> \end{gathered} <br />

After solving...

<br /> \begin{gathered}<br /> A: - 1/2 \hfill \\<br /> B:1/2 \hfill \\<br /> C:1/2 \hfill \\<br /> D: - 1 \hfill \\<br /> E:1 \hfill \\ <br /> \end{gathered} <br />
 
Part 3:

<br /> \begin{gathered}<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \int {\left[ {\frac{{As + B}}<br /> {{s^2 + 1}} + \frac{C}<br /> {{s - 1}} + \frac{D}<br /> {{(s - 1)^2 }} + \frac{E}<br /> {{(s - 1)^3 }}} \right]} ds \hfill \\<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \int {\left[ {\frac{{( - 1/2)s + (1/2)}}<br /> {{s^2 + 1}} + \frac{{1/2}}<br /> {{s - 1}} + \frac{{ - 1}}<br /> {{(s - 1)^2 }} + \frac{1}<br /> {{(s - 1)^3 }}} \right]} ds \hfill \\ <br /> \end{gathered} <br />
 
Part 4:

Alright, now just solving the integral:

<br /> \begin{gathered}<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \frac{1}<br /> {2}\int {\frac{{ds}}<br /> {{s^2 + 1}} - \frac{1}<br /> {2}\int {\frac{{s ds}}<br /> {{s^2 + 1}}} + \int {\frac{{1/2}}<br /> {{s - 1}}ds - } } \int {\frac{{ds}}<br /> {{(s - 1)^2 }} + \int {\frac{{ds}}<br /> {{(s - 1)^3 }}} } \hfill \\<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \frac{1}<br /> {2}\tan ^{ - 1} s - \frac{1}<br /> {4}\ln (s^2 + 1) + \frac{1}<br /> {2}\ln |s - 1| + \frac{1}<br /> {{s - 1}} - \frac{1}<br /> {{2(s - 1)^2 }} + C \hfill \\ <br /> \end{gathered} <br />

Here's what the book says:

<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}} = \frac{{ - 1}}<br /> {{(s - 1)^2 }} + \frac{1}<br /> {{(s - 1)}} + \tan ^{ - 1} s + C<br />

So I'm not quite sure where I went wrong...Any input will be appreciated! :cool:
 
Last edited:
While equating coefficients works it is seldom the simplest way to find the coefficients.
from
2s + 2 = (As + B)(s - 1)^3 + C(s^2 + 1)(s - 1)^2 + D(s^2 + 1)(s - 1) + E(s^2 + 1)
If we let s= 1, so that s-1= 0, we get 2+ 2= 4 = B(0)+ C(0)+ D(0)+ E(2) so E= 2, not 1.

Unfortunately, no other value of s makes everything collapse so easily but letting s= 0, -1, 2, and -2 should give fairly simple equations for A, B, C, and D.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
3
Views
1K
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K