Integration by Parts for ∫ xlnx/(x^2-1)^(1/2)dx

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Integration
nameVoid
Messages
238
Reaction score
0

Homework Statement



I(xlnx/(x^2-1)^(1/2),x)
x=secT ; dx=secTtanTdT
I(secTln(secT)secTtanTdT/tanT,T)
I(sec^2Tln(secT),T)
u=ln(secT) du= secTtanTdT/secT = tanTdT
dv=sec^2Tdt v=tanT
tanTln(secT)- I(tan^2T,T)
tanTln(secT)-I(sec^2-1,T)
tanTln(secT)-tanT+T+C
T=sec^-1x
secT=x
tanT= (x^2-1)^(1/2)
tanTln(secT)-tanT-T= (x^2-1)^(1/2)lnx-(x^2-1)^(1/2)+sec^-1x+C

Homework Equations





The Attempt at a Solution


 
Physics news on Phys.org
Hi nameVoid! :smile:

(have an integral: ∫ and a square-root: √ and try using the X2 tag just above the Reply box :wink:)

Yes, that looks correct, but you could have missed out a lot in the middle if you'd noticed that x/√(x2 - 1) is an exact integral, so you can integrate by parts immediately. :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top