Integration of this trigonometry function

songoku
Messages
2,467
Reaction score
382
Homework Statement
Find
$$\int x \sqrt{1+4 \cos^2 (x)} dx$$
Relevant Equations
High School Integration:
integration by substitution
integration by part
integration of trigonometry function
Is it possible to do the integration? That is the full question

I don't know where to start, try to use ##u=\cos x## and also ##\cos^2 (x) = \frac{1}{2} + \frac{1}{2} \cos (2x)## but failed.

Thanks
 
Physics news on Phys.org
WolframAlpha and I assume that there is no closed solution. The fact that ##x## occurs as polynomial and as trigonometric function (whose derivative is not the polynomial in ##x##) makes it impossible to use things like e.g. the Weierstraß substitution.
 
Last edited:
  • Like
Likes songoku and BvU
Thank you very much fresh_42
 
Are you 100% sure you wrote the problem down right? If instead of x in the cosine you have an x2 you could make more progress. (How much progress would depend on what the new integral is)
 
Vanadium 50 said:
Are you 100% sure you wrote the problem down right? If instead of x in the cosine you have an x2 you could make more progress. (How much progress would depend on what the new integral is)
Yes 100% sure. I have re-checked several times when doing the question and before posting it here
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top