Graduate Integration of trigonometric functions

Click For Summary
The discussion focuses on the challenges of integrating trigonometric functions, particularly when dealing with products and quotients. Substitution methods, such as setting a-b cos x = u, are suggested as effective strategies to simplify the integration process. The Weierstraß substitution is mentioned as a useful technique for handling trigonometric integrals in general. The conversation also highlights the importance of understanding differentiation rules, like the product rule, in relation to integration. Overall, the thread emphasizes various approaches and insights for tackling complex trigonometric integrals.
Indir
Messages
1
Reaction score
0
TL;DR
Integration problem
Was solving a problem in mathematics and came across the following integration. Unable to move further. Can somebody provide answer for the following ( a and b are constants ).
Integ.gif
 

Attachments

  • Integration.gif
    Integration.gif
    1 KB · Views: 103
  • Integ.gif
    Integ.gif
    1 KB · Views: 107
Physics news on Phys.org
Why don not you try substitution
a-b \cos x = u?
 
A good plan to tackle such questions is: remove what disturbs the most! That often helps to get into the problem. If you have trig functions then it is always good to keep the Weierstraß substitution in mind; not here but in general.
 
On its own, just as a trick, ##sinxcosx=\frac{sin2x}{2}##, with simple integral ##\frac{-Cos2x}{2}##
But, yes, that denominator kills it. Maybe Fresh can write an insight on integrating expressions a/b from the respective integrals of a,b , right, Fresh? ;)
 
WWGD said:
On its own, just as a trick, ##sinxcosx=\frac{sin2x}{2}##, with simple integral ##\frac{-Cos2x}{2}##
But, yes, that denominator kills it. Maybe Fresh can write an insight on integrating expressions a/b from the respective integrals of a,b , right, Fresh? ;)
The difficulty with integrating products (and likewise quotients) arises from the fact that differentiation is a derivation. The Jacobi identity / Leibniz rule / product rule rules this world and not the chain rule.
$$
D(f\cdot g) = Df \cdot g + f\cdot Dg
$$
We can sometimes use the fact the ##D\sin= \cos## and ##D\cos= -\sin## and in the case of trigonometric functions. Here is an example:
https://www.physicsforums.com/insig...tion/#Integration-by-Parts-–-The-Leibniz-Rule
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 49 ·
2
Replies
49
Views
7K