Integration, where have i gone wrong?

  • Thread starter Thread starter Dell
  • Start date Start date
  • Tags Tags
    Integration
Dell
Messages
555
Reaction score
0
\intarctg\sqrt{x}dx

using\intudv=uv-\intvdu

dv=dx
v=x

u=arctg\sqrt{x}
du=u'dx=[1/(1+x)]dx

\intarctg\sqrt{x}dx=xarctg\sqrt{x} - \intx*[1/(1+x)]dx
=xarctg\sqrt{x} - \int[x/(1+x)]dx
=xarctg\sqrt{x} - \int1-[1/(1+x)]dx
=xarctg\sqrt{x} - x+ln|x+1|+c
but this is wrong, where have i made the mistake?
 
Physics news on Phys.org
The derivative of arctan(sqrt(x)) is (1/(1+x))*1/2(sqrt(x)), you can still solve this question by looking at:
sqrt(x)/(1+x)dx=2/3(d(x^3/2))/(1+(x^3/2)^(2/3))
sqrt(x)dx=2/3d(x^3/2)
and the integral of dy/(1+y^2/3)
can be solved by writing y^1/3=sinh(t).

I am not sure this will work, but I think that there is no easy way here.
 
thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top