Interesting theorem, complex eigenvalues.

bobby2k
Messages
126
Reaction score
2
Take a look at this theorem.

theorem.png


Is it a way to show this theorem? I would like to show it using the standard way of diagonalizing a matrix.

I mean if P = [v1 v2] and D =
[lambda1 0
0 lambda D]

We have that AP = PD even for complex eigenvectors and eigenvalues.

But the P matrix in this theorem is real, and so is the C matrix. I think they have used that v1 and v2 are conjugates, and so is lambda 1 and lambda 2.

How would you show this theorem? Can you use ordinary diagonolisation to show it?
 
Last edited:
Physics news on Phys.org
I would suggest: check that AP= PC writing A with some matrix elements (say p,q,r,s) and using the definitions.
 
Before showing the theorem, I'll first establish the lemma that if you have two real 2x2 matrices, and if you multiply them on the right by \begin{bmatrix} 1 \\ i \end{bmatrix} and you get the same result for both, then the two original matrices are the same:

Let X= \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} and Y= \begin{bmatrix} y_1 & y_2 \\ y_3 & y_4 \end{bmatrix}. Then if
\begin{align}X\begin{bmatrix} 1 \\ i \end{bmatrix} &amp;= Y\begin{bmatrix} 1 \\ i \end{bmatrix}, \\<br /> \begin{bmatrix} x_1 &amp; x_2 \\ x_3 &amp; x_4 \end{bmatrix}\begin{bmatrix} 1 \\ i \end{bmatrix} &amp;= \begin{bmatrix} y_1 &amp; y_2 \\ y_3 &amp; y_4 \end{bmatrix}\begin{bmatrix} 1 \\ i \end{bmatrix} \end{align} \\<br /> \begin{bmatrix} x_1 + x_2i \\ x_3 + x_4i \end{bmatrix} = \begin{bmatrix} y_1 + y_2i \\ y_3 + y_4i \end{bmatrix}
Hence x_1=y_1, x_2=y_2, x_3=y_3, x_4=y_4, and hence X=Y.

Now for the theorem itself:
Notice that P \begin{bmatrix} 1 \\ i \end{bmatrix} = {\bf v} and that
C\begin{bmatrix} 1 \\ i \end{bmatrix}=\begin{bmatrix} a-bi \\ b+ai \end{bmatrix}=\begin{bmatrix} \lambda \\ \lambda i \end{bmatrix} = \lambda\begin{bmatrix} 1 \\ i \end{bmatrix}.
Then, for any real matrix A with complex eigenvalues, we have
\begin{align}A{\bf v} &amp;= \lambda {\bf v} \\<br /> AP\begin{bmatrix} 1 \\ i \end{bmatrix} &amp;= \lambda P\begin{bmatrix} 1 \\ i \end{bmatrix} \\ &amp;= P \lambda \begin{bmatrix} 1 \\ i \end{bmatrix} \\ &amp;= PC \begin{bmatrix} 1 \\ i \end{bmatrix}\end{align}
But both AP and PC are real, hence
AP=PC \quad \text{or} \quad A=PCP^{-1}.
 
Very nice proof!, thank you very much!
 
Back
Top