Interferometer Capabilities for Detecting Wavelength Differences

In summary, the conversation discusses the principles and uses of a Michelson interferometer, which involves directing a beam of light at a flat surface at different angles to observe interference patterns. The question posed is what would be seen if two beams of slightly different wavelengths were used. The answer suggests that interference rings may still be visible but not as clearly defined due to the oscillation caused by the difference in wavelengths. It is also mentioned that the human eye may not be able to detect the oscillation rate. The conversation also delves into the concept of phase shift and its potential detection with two different wavelengths.
  • #1
TheAntiRelative
133
0
This is actually a copy of a thread I put in the Relativity forum because I figured interferometry was something of importance in that area but because the question is somewhat strange and might require direct experience I thought I'd copy it in here as well to see if someone might know something.

Thanks
==============

Please correct me if/where I'm wrong in my understanding of the following (laymans terms) explanation and question:

A michelson interferometer like used in 1887 works off a basic principle of having the same beam of light arrive at the same place slightly behind/ahead of itself. We are able to see interference (rings) by making the light's direction strike a flat surface at differing angles thereby causing both addative and subtractive interaction to be seen across that surface.

The assumption for this system to work is that both beams of light are of exactly the same wavelength but because of the differing initial arrival times there is a constant and consistant phase (arrival) difference. The peaks are constantly the same distance apart.

If used in a certain way, an interferometer (of a little different design than michelson 1887) can also be used to determine the wavelength of an unknown beam of light when interfering with a known lightsource. However, michelson's interferometer was not used/designed to detect this.

The Queston:
If a michelson interferometer of the design and methodology of use of the 1887 model received 2 beams of slightly unlike wavelengths, what would be seen? (For example, a beam of 600nm and a beam of 600.06nm)

From what I understand, you could still establish visual interference rings but not as well defined because of the oscillation action that would be caused. Is this true?
Without the equipment I could mentally see reasons why this could be true and reasons why this could be false.
True because I know interference rings are seen when using an interferometer to determine an unknown wavelength diferent than the reference beam, But I don't know if they stand still.
False because oscillation would seem to cause blurring...
I lean toward believing that the rings become averages of sets of waves instead of representative of single waves.


If true...
At this point since the two beams are not the same, there seems to no longer be any such thing a a phase shift since the lineup of peaks and troughs is constantly moving.
Would it be oscillating slowly enough to be able to visually set up a temporary lineup of peaks or does it oscillate too fast for the human eye? (I would guess that even as small of a difference as I mentioned, the ocillation rate would be far above the 30somthingish times per second that a human eye can detect.)
Now if the instrument was calibrated to show rings with two different wavelengths, is it true that you could still detect a phase shift but only on an order of magnitude smaller in proportion to the number of waves averaged to create each fringe?


Thanks in advance for your answers :)
 
Physics news on Phys.org

1. What is an interferometer?

An interferometer is a scientific instrument used to measure the interference pattern created by two or more waves. It is commonly used in the fields of optics, astronomy, and physics to measure wavelengths, distances, and velocities.

2. How does an interferometer work?

An interferometer works by splitting a beam of light into two or more paths, then recombining the beams to create an interference pattern. The resulting pattern can be measured and analyzed to gather information about the light source.

3. What are the applications of interferometers?

Interferometers have a wide range of applications, including measuring distances, detecting gravitational waves, analyzing the properties of materials, and improving the resolution of telescopes.

4. What are the types of interferometers?

There are several types of interferometers, including Michelson, Mach-Zehnder, Sagnac, and Fabry-Perot. Each type has its own specific design and purpose, but they all work on the same principle of measuring interference patterns.

5. What are the advantages of using an interferometer?

Interferometers offer high precision and accuracy in measuring various quantities, such as distances, wavelengths, and velocities. They also allow for non-contact measurements, making them useful for delicate or inaccessible objects. Additionally, interferometers can be used for both research and industrial applications.

Similar threads

Replies
10
Views
654
  • Special and General Relativity
Replies
9
Views
757
Replies
33
Views
2K
  • Introductory Physics Homework Help
Replies
24
Views
1K
  • Special and General Relativity
Replies
12
Views
1K
  • Classical Physics
Replies
9
Views
1K
  • Classical Physics
Replies
1
Views
925
  • Quantum Physics
Replies
13
Views
656
  • Special and General Relativity
Replies
11
Views
303
  • Quantum Interpretations and Foundations
Replies
15
Views
256
Back
Top