I Interpreting ##A^{\mu}(x)|0\rangle## and ##\psi (x) |0\rangle##

Click For Summary
The discussion centers on the interpretation of the states ##A^{\mu}(x)|0\rangle## and ##\psi(x)|0\rangle## in quantum field theory. It clarifies that these states should be viewed as abstract objects with spinor indices rather than as localized particles at position ##x##. The wavefunctions of photons and electrons are described with additional indices that reflect their vector or spinor nature, which complicates their interpretation. The correlation functions, such as ##\langle 0|\overline{\psi}(x)\psi(y)|0\rangle##, are emphasized as measures of correlations between field values rather than simple transitions between one-particle states. Overall, the discussion highlights the need to distinguish between state vectors in Hilbert space and their corresponding wavefunctions.
Ryder Rude
Messages
41
Reaction score
6
I can understand how ##\phi (x)|0\rangle## represents the wavefunction of a single boson localised near ##x##.I don't understand how the same logic appies to ##A^{\mu}(x)|0\rangle## and ##\psi |0\rangle##. Both of these operators return a four component wavefunction when operated on the vaccuum, because of the vector/spinor indices in the expansion of these operators. However, the wavefunction of a photon or an electron is described by a one-component wavefunction as I show below:

A wavefunction of a single electron is written as ##\sum_s \int C_s(p) |p, s\rangle dp##. The ##s## label represents the two spin states. A wavefunction of a single photon is written as ##\sum_r \int C_r(p) |p,r\rangle dp##, ##r## labels polarisations.

The wavefunction returned by ##\psi (x)|0\rangle## is of the form ##\sum_{\alpha} \sum_{s} \int C_{s,\alpha} (p) |p,s\rangle dp##. This has an extra index ##\alpha## which runs from 0 to 3.

##C## is just a complex number in all of the above
 
Last edited:
Physics news on Phys.org
You're right, the state ##\psi(x)|0\rangle## represents a specific superposition of localized fermion states which is exactly why the LSZ theorem for fermions includes factors of ##\overline{u}_{s}(k)## and ##\overline{v}_{s}(k)## to project out your desired states. It's probably better to think of objects like ##\langle 0|\overline{\psi}(x)\psi(y)| 0 \rangle## as the correlation function of the field rather than some transition function between one-particle states.
 
  • Like
Likes protonsarecool and vanhees71
Ryder Rude said:
However, the wavefunction of a photon or an electron is described by a one-component wavefunction
No it isn't. You should distinguish the state in the Hilbert space from the wave function. The former is a vector so is a single object, the latter is one of components of the vector. Even for zero spin, the vector in the Hilbert space ##|\psi\rangle## has infinitely many components ##\psi_x=\psi(x)=\langle x|\psi\rangle##.
 
HomogenousCow said:
You're right, the state ##\psi(x)|0\rangle## represents a specific superposition of localized fermion states which is exactly why the LSZ theorem for fermions includes factors of ##\overline{u}_{s}(k)## and ##\overline{v}_{s}(k)## to project out your desired states. It's probably better to think of objects like ##\langle 0|\overline{\psi}(x)\psi(y)| 0 \rangle## as the correlation function of the field rather than some transition function between one-particle states.

So I should think of ##\psi (x) |0\rangle## as just an absract object with spinor indices rather than a particle at a position ##x##, right? And the same logic applies to ##A^{\mu} (x)|0\rangle##?

Also, can you please explain your interpretation of this as a correlation function? Why is it called a correlation function? It's measuring correlation between what?

Should I think of ##\langle 0| \phi(y) \phi(x) |0\rangle## also as a correlation function, rather than an inner product between localised particle wavefunctions?
 
Last edited:
Demystifier said:
No it isn't. You should distinguish the state in the Hilbert space from the wave function. The former is a vector so is a single object, the latter is one of components of the vector. Even for zero spin, the vector in the Hilbert space ##|\psi\rangle## has infinitely many components ##\psi_x=\psi(x)=\langle x|\psi\rangle##.

Okay. But how should I interpret ##\psi (x)|0\rangle## and ##A^{\mu} (x) |0\rangle##? Both of these objects have have extra index ##\mu## or ##\alpha##, which really shouldn't be there in the state-vector describing a single photon or an electron/positron.
 
Ryder Rude said:
Okay. But how should I interpret ##\psi (x)|0\rangle## and ##A^{\mu} (x) |0\rangle##? Both of these objects have have extra index ##\mu## or ##\alpha##, which really shouldn't be there in the state-vector describing a single photon or an electron/positron.
Strictly speaking, in a definition of state you should have both an integration over ##x## and a sum over spin indices. Something like
$$|\psi\rangle=\int d^3x\, c_{\mu}({\bf x}) A^{\mu}({\bf x}) |0\rangle$$
But you can still get a dependence on ##{\bf x}## and ##{\mu}## if ##c_{\mu}({\bf x})## is a Krorencker ##\delta## in the discrete label and Dirac ##\delta## in the continuous one.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...