Interpreting ##\hat{e}_z## in Maxwell's equations

flintbox
Messages
10
Reaction score
0
Hi, I'm trying to interpret a form of Maxwell's equations, but I can't seem to figure out where the term $\^{e}_z$ comes from in the following equation:
##
\frac{\partial{\vec{E}_t}}{\partial{z}}+i\frac{\omega}{c}\hat{e}_z\times \vec{B}_t=\vec{\nabla}_tE_z
##
 
Physics news on Phys.org
This is a guess because more background on the source of this equation is needed. My guess is that the problem being worked is assuming a plane wave field dependence?
 
Will you please clarify the notations? What does ##t## stand for?
 
flintbox said:
Hi, I'm trying to interpret a form of Maxwell's equations, but I can't seem to figure out where the term $\^{e}_z$ comes from in the following equation:
##
\frac{\partial{\vec{E}_t}}{\partial{z}}+i\frac{\omega}{c}\hat{e}_z\times \vec{B}_t=\vec{\nabla}_tE_z
##
It comes from taking the curl of the B field (here they are assuming a plane wave). But the equation is not completely correct, the term on the rhs does not make any sense.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top