levicivita
- 1
- 0
Homework Statement
let A_{1}, A_{2}, ... be a sequence of subsets of R such that the intersection of the A_{1}, A_{2}, A_{3}..., A_{n} is nonempty for each n greater than/equal to 1. Does it follow that the intersection of all A_{n}'s is nonempty?
Does the answer change if you are given the extra information that each A_{n} is a closed interval, that is a set of the form [a_{n}, b_{n}] = {x member of R : a_{n} \leg x \leq b_{n} for some pair of real numbers (a_{n},b_{n}) with a_{n} < b_{n}
Homework Equations
The Attempt at a Solution
I don't really have a clue how to start this. It seems to me that in both cases it should be non empty, but I'm really not sure. I'm not looking for some one to do this for me, because I want to be able to do it myself - I would appreciate it if someone could point me in the right direction without giving the game away.