Linear Algebra Introduction to Linear Algebra by Strang

AI Thread Summary
Gilbert Strang's "Introduction to Linear Algebra" serves as a foundational textbook for those new to the subject, particularly beneficial for self-learners with limited mathematical backgrounds. The book covers essential topics such as vectors, linear equations, vector spaces, orthogonality, determinants, eigenvalues, and linear transformations, along with practical applications in fields like engineering and computer graphics. While the writing is clear and includes worked examples, some readers find it overly wordy with insufficient examples in certain sections. The text is recommended for beginners and those studying independently, especially in conjunction with Strang's free online resources and lectures. However, it may not suit individuals with a strong background in linear algebra.

For those who have used this book


  • Total voters
    5
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,169
Reaction score
3,327

Table of Contents:
Code:
[LIST]
[*] Introduction to Vectors
[LIST]
[*] Vectors and Linear Combinations
[*] Lengths and Dot Products
[/LIST]
[*] Solving Linear Equations
[LIST]
[*] Vectors and Linear Equations
[*] The idea of Elimination
[*] Elimination Using Matrices
[*] Rules for Matrix Operations
[*] Inverse Matrices
[*] Elimination = Factorization: A=LU
[*] Transposes and Permutations
[/LIST]
[*] Vectors Spaces and Subspaces
[LIST]
[*] Spaces of Vectors
[*] The Nullspace of A: Solving Ax=0
[*] The Rank and the Row Reduced Form
[*] The Complete Solution to Ax=b
[*] Independence, Basis and Dimension
[*] Dimensions of the Four Subspaces
[/LIST]
[*] Orthogonality
[LIST]
[*] Orthogonality of the Four Subspaces
[*] Projections
[*] Least Square Approximations
[*] Orthogonal Bases and Gram-Schmidt
[/LIST]
[*] Determinants
[LIST]
[*] The Properties of Determinants
[*] Permutations and Cofactors
[*] Cramer's Rule, Inverses, and Volumes
[/LIST]
[*] Eigenvalues and Eigenvectors
[LIST]
[*] Introduction to Eigenvalues
[*] Diagonalizing a Matrix
[*] Applications to Differential Equations
[*] Symmetric Matrices
[*] Positive Definite Matrices
[*] Similar Matrices
[*] Singular Value Decomposition (SVD)
[/LIST]
[*] Linear Transformations
[LIST]
[*] The Idea of a Linear Transformation
[*] The Matrix of a Linear Transformation
[*] Change of Basis
[*] Diagonalization and the Pseudoinverse
[/LIST]
[*] Applications
[LIST]
[*] Matrices in Engineering
[*] Graphs and Networks
[*] Markov Matrices and Economic Models
[*] Linear Programming
[*] Fourier Series: Linear Algebra for Functions
[*] Computer Graphics
[/LIST]
[*] Numerical Linear Algebra
[LIST]
[*] Gaussian Elimination in Practice
[*] Norms and Condition Numbers
[*] Iterative Methods for Linear Algebra
[/LIST]
[*] Complex Vectors and Matrices
[LIST]
[*] Complex Numbers
[*] Hermitian and Unitary Matrices
[*] The Fast Fourier Transform
[/LIST]
[*] Solutions to Selected Exercises
[*] A Final Exam
[*] Matrix Factorizations
[*] Conceptual Questions for Review
[*] Glossary: A Dictionary for Linear Algebra
[*] Index
[*] Teaching Codes
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org
A very rudimentary textbook. I say that with the uttermost respect for the text. This book doesn't pretend to be anything but an introduction, clear from the title. This book is a brilliantly easy introduction for those learning independently. The writing is clear and the worked examples are easy to follow. Strang already offers many free resources, his lectures are available at (web.mit.edu/18.076).

I would recommend this textbook primarily to those interested in the topic, but walking in with a relatively weak background in mathematics. This book is not for those with a strong background in Linear Algebra.
 
Last edited by a moderator:
I've read through parts of this text. I personally did not like it. It's wordy and lacks examples in some areas but its much better than David's lay book. Though Strang does have his own video series online for linear algebra which are actually pretty good.
 
As an intro text, I'd say its decent if its your first exposure to linear algebra. Like the poster above me stated, there is a lack of examples and a lot of explanation filler. Also, I'd recommend this text for anyone trying to self-study MIT OCW 18.06.
 
The book is fascinating. If your education includes a typical math degree curriculum, with Lebesgue integration, functional analysis, etc, it teaches QFT with only a passing acquaintance of ordinary QM you would get at HS. However, I would read Lenny Susskind's book on QM first. Purchased a copy straight away, but it will not arrive until the end of December; however, Scribd has a PDF I am now studying. The first part introduces distribution theory (and other related concepts), which...
I've gone through the Standard turbulence textbooks such as Pope's Turbulent Flows and Wilcox' Turbulent modelling for CFD which mostly Covers RANS and the closure models. I want to jump more into DNS but most of the work i've been able to come across is too "practical" and not much explanation of the theory behind it. I wonder if there is a book that takes a theoretical approach to Turbulence starting from the full Navier Stokes Equations and developing from there, instead of jumping from...

Similar threads

  • Poll Poll
Replies
1
Views
3K
  • Poll Poll
Replies
1
Views
5K
  • Poll Poll
Replies
1
Views
4K
  • Poll Poll
Replies
1
Views
4K
  • Poll Poll
Replies
3
Views
8K
Replies
2
Views
6K
Replies
1
Views
4K
Replies
2
Views
4K
  • Poll Poll
Replies
6
Views
10K
  • Poll Poll
Replies
3
Views
5K
Back
Top