CubicFlunky77
- 25
- 0
My goal: To show the dimension of space L equals the length of any maximal flag of L;
Is the following valid?
My attempt:
Let M \rightarrow {L_{i-1}, ... L_i}
where {e_i} \in L_i | e_i \not\in L_{i-1}
Assuming e_i \in M and e_i \not\in L_{i-1},
we can say: e_i \in L_i and L_i = M.
Thus: {e_1, ... ,e_i} , {e_i} \in L_i = M \ L_{i-1}
for n = dim L or "finite dimension" of L such that: L_o \subset L_1 \subset L_2 ... \subset L_n
Is the following valid?
My attempt:
Let M \rightarrow {L_{i-1}, ... L_i}
where {e_i} \in L_i | e_i \not\in L_{i-1}
Assuming e_i \in M and e_i \not\in L_{i-1},
we can say: e_i \in L_i and L_i = M.
Thus: {e_1, ... ,e_i} , {e_i} \in L_i = M \ L_{i-1}
for n = dim L or "finite dimension" of L such that: L_o \subset L_1 \subset L_2 ... \subset L_n