MHB Introductory Algebra Percentage Word Problem

Click For Summary
The discussion revolves around a percentage word problem involving a dress marked down first by 20% and then by an additional 15%, resulting in a final price of $51. The initial calculations incorrectly added the discount percentages, leading to a misunderstanding of the final sale price as 65% of the original price. The correct approach shows that after both discounts, the final price is actually 68% of the original price. The original price is calculated to be $75, not $78.46, confirming that the book's answers are accurate. Understanding the sequential nature of percentage reductions is crucial for solving such problems correctly.
Larry2527
Messages
1
Reaction score
0
The problem as given in the book:

The price of a dress is marked down 20% on May 1. On May 25th the reduced price is marked down an additional 15% to \$51. (a) What percent of the original price is the final sale price? (b) "What is the original price?

All I could think was trying to work the problem this way:

(a) 20% + 15% = 35% (total discount percentage)
100% - 35% = 65% (percent of the original price for a sale price of \$51)

(b) 65%x = \$51
x = 51/.65
x = \$78.46 (original price)

The answer given in the back of the book is given as (a) 68% and (b) \$75. Assuming the book's answer is correct, what am I missing?

- - - Updated - - -

Er, it posted all garbled for some reason. I have no idea why. Any ideas?
 
Mathematics news on Phys.org
Larry2527 said:
The problem as given in the book:

The price of a dress is marked down 20% on May 1. On May 25th the reduced price is marked down an additional 15% to \$51. (a) What percent of the original price is the final sale price? (b) "What is the original price?

All I could think was trying to work the problem this way:

(a) 20% + 15% = 35% (total discount percentage)
100% - 35% = 65% (percent of the original price for a sale price of \$51)

(b) 65%x = \$51
x = 51/.65
x = \$78.46 (original price)

The answer given in the back of the book is given as (a) 68% and (b) \$75. Assuming the book's answer is correct, what am I missing?

Let $P$ be the original price.

first reduction to $0.80P$

second reduction to $0.85(0.80P) = 0.68P = 51 \implies P = 75$

the final price is 68% of $P = 75$

fyi, dollar signs activate the latex math type on this site. if you want to use one without doing so, put a backward slash \ prior to the dollar sign.
 
Larry2527 said:
The problem as given in the book:

The price of a dress is marked down 20% on May 1. On May 25th the reduced price is marked down an additional 15% to \$51. (a) What percent of the original price is the final sale price? (b) "What is the original price?

All I could think was trying to work the problem this way:

(a) 20% + 15% = 35% (total discount percentage)
There is your mistake! A percentage is always a percent of something (the "base" number). You cannot add these percentages because they are of different bases. The first is 20% of the original price. The second is 15% of that new price.

Let P be the original price. Then after the first mark down, the price is P'= P- 0.20P= 0.80P. After the second markdown, the price is P'- 0.15P'= 0.85P'= 0.85(0.80P)= 0.68P, or 68% of the original price, not 65%.

0.68P= 51 so P= 51/0.68

100% - 35% = 65% (percent of the original price for a sale price of \$51)

(b) 65%x = \$51
x = 51/.65
x = \$78.46 (original price)

The answer given in the back of the book is given as (a) 68% and (b) \$75. Assuming the book's answer is correct, what am I missing?

- - - Updated - - -

Er, it posted all garbled for some reason. I have no idea why. Any ideas?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
7K
Replies
3
Views
2K
Replies
2
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K