Introductory physics: Time for a ball thrown vertically to reach maximum height

AI Thread Summary
The discussion revolves around a physics problem regarding the time it takes for a ball thrown vertically to reach maximum height. A participant calculates the maximum height using the freefall equation and arrives at a distance of 11.4 meters. However, the main focus of the problem is to determine the time in seconds, not the height in meters. There is confusion regarding the interchange of variables "x" and "d," as well as the clarity of the images shared in the forum. The conversation emphasizes the need to address the time calculation rather than the height achieved.
danielsmith123123
Messages
26
Reaction score
4
Homework Statement
A 3 kg ball is thrown vertically into the air with an initial velocity of 15 m/s. What is the time it takes for the ball to reach its maximum height?
Relevant Equations
Vf =vi +at
Vf^2 = Vi^2 +2ax
x = Vf t - (1/2)(a)(t^2)
x = Vi t + (1/2)(a)(t^2)
Is the answer key wrong? I keep getting the same answer and it is verified with the freefall equation distance=1/2 (g)(t^2)
IMG_5721[1120].PNG
 
Last edited by a moderator:
Physics news on Phys.org
You should write the full text of the problem, not an abstract of it. Where did the value of d comes from?
 
Ok thank you, i edited the forum. I guess you can't open pictures on this website, but i calculated d with Vf^2=Vi^2 +(2)(a)(d)
0^2 = 15^2 + (2)(-9.8)d
d = 11.4m
(I realize i probably shouldn't use "x" and "d" interchangibly)
 
You found the maximum height. The problem is asking you to find the time it takes to reach that maximum height. Your answer should be a number in seconds, not meters.
 
danielsmith123123 said:
Ok thank you, i edited the forum. I guess you can't open pictures on this website, but i calculated d with Vf^2=Vi^2 +(2)(a)(d)
0^2 = 15^2 + (2)(-9.8)d
d = 11.4m
(I realize i probably shouldn't use "x" and "d" interchangibly)
You don't need the height but you got it OK. What is your problem? I cannot read the image you posted. It is not clear enough.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top