Intuitive statistical mechanical explanation for thermodynamic 2nd law

AI Thread Summary
The discussion centers on the intuitive understanding of the second law of thermodynamics through the lens of statistical mechanics. It clarifies that while the number of microstates is fixed, most of these correspond to equilibrium states, leading systems to predominantly occupy these states. An analogy using a shuffled deck of cards illustrates that the even distribution of suits represents equilibrium, as most arrangements fall into this category. The conversation also explores the distinction between the number of microstates for equilibrium states being larger versus overwhelmingly larger than for non-equilibrium states. Ultimately, the dialogue emphasizes the importance of understanding the statistical nature of microstates in explaining thermodynamic principles.
vinovinovino
Messages
2
Reaction score
0
I don't have the intuitive picture of thermodynamic 2nd law, in terms of statistical mechanics. That is, why should the number of microstates be maximized in equilibrium? Anyone gives an intuitive explanation? Thanks a lot.
 
Physics news on Phys.org
vinovinovino said:
I don't have the intuitive picture of thermodynamic 2nd law, in terms of statistical mechanics. That is, why should the number of microstates be maximized in equilibrium? Anyone gives an intuitive explanation? Thanks a lot.

Its not that the number of microstates is maximized in equilibrium. You have a fixed number of microstates, and most of those microstates are equilibrium microstates. The system bounces around among those microstates, and since almost all of them are equilibrium microstates, the system is almost always in an equilibrium microstate.

The real question is, why are almost all microstates equilibrium microstates? You can get an intuitive feel for this by considering a deck of cards - why, after I shuffle a deck of cards, are the red suits and the black suits more or less evenly distributed throughout the deck? The more or less even distribution corresponds to equilibrium.

The number of ways you can arrange the cards in a deck (the microstate) is a fixed number. Almost all of them will have the red and black suits more or less evenly distributed (equilibrium macrostate). Only a small number will have a lot of black cards in the top half and a lot of red cards in the bottom half. (non-equilibrium macrostate).
 
Rap said:
Its not that the number of microstates is maximized in equilibrium. You have a fixed number of microstates, and most of those microstates are equilibrium microstates. The system bounces around among those microstates, and since almost all of them are equilibrium microstates, the system is almost always in an equilibrium microstate.

The real question is, why are almost all microstates equilibrium microstates? You can get an intuitive feel for this by considering a deck of cards - why, after I shuffle a deck of cards, are the red suits and the black suits more or less evenly distributed throughout the deck? The more or less even distribution corresponds to equilibrium.

The number of ways you can arrange the cards in a deck (the microstate) is a fixed number. Almost all of them will have the red and black suits more or less evenly distributed (equilibrium macrostate). Only a small number will have a lot of black cards in the top half and a lot of red cards in the bottom half. (non-equilibrium macrostate).

Well that's one way to go about it, but it seems rather backward. IMO it would make more sense to define equilibrium as the macrostate with the most number of microstates corresponding to it. Then questions like "The real question is, why are almost all microstates equilibrium microstates" get tautological answers, and it becomes really evident to see why a system is most likely in its equilibrium state, as it follows directly from the definition of equilibrium and the plausible guess that every microstate is equally likely.
 
mr. vodka said:
Well that's one way to go about it, but it seems rather backward. IMO it would make more sense to define equilibrium as the macrostate with the most number of microstates corresponding to it. Then questions like "The real question is, why are almost all microstates equilibrium microstates" get tautological answers, and it becomes really evident to see why a system is most likely in its equilibrium state, as it follows directly from the definition of equilibrium and the plausible guess that every microstate is equally likely.

I don't like to look at it that way. As I see it, classical thermodynamics and the four laws are a concise statement of experimental results. Equilibrium is defined in classical thermodynamics. Statistical mechanics then comes along and explains classical thermodynamics. Stat. mech. says, look, the system can be in any of a huge number of microstates, and the overwhelming majority of those states correspond to the macrostate that classical thermodynamics calls equilibrium - the equilibrium macrostate. Questions like "why are almost all microstates equilibrium microstates" is then a statistics problem, and a good question. The fact that systems at equilibrium almost always stay in equilibrium suggests that each microstate is equally likely.

A finer point is the difference between the idea that 1) the number of microstates corresponding to the equilibrium macrostate is larger than the number of microstates for any other macrostate and 2) the number of microstates corresponding to the equilibrium macrostate is OVERWHELMINGLY larger than the number of microstates for any other macrostate. This is the difference between saying that the system will be in an equilibrium macrostate most often, and that it will be in an equilibrium macrostate almost always.

The real question is why is it OVERWHELMINGLY larger, not just larger. Why is the equilibrium microstate not simply the most common, but almost the only one? Thats a good statistical question, and answering it will address the OP, I think.
 
Well your first paragraph seems to be a matter of taste. I like to give precedence to the concepts of statistical mechanics, as they apply more broadly. Analogously, I don't like to see the Boltzmann entropy as an explanation for thermodynamic entropy, rather I like to see the latter as a specific application of the former.

As for your other paragraphs, I agree!
 
mr. vodka said:
Well your first paragraph seems to be a matter of taste. I like to give precedence to the concepts of statistical mechanics, as they apply more broadly. Analogously, I don't like to see the Boltzmann entropy as an explanation for thermodynamic entropy, rather I like to see the latter as a specific application of the former.

As for your other paragraphs, I agree!

Well, you are probably right about it being a matter of taste, but I like to keep clear in my mind the difference between a phenomenological theory and an explanatory theory. I think classical thermodynamics and Maxwell's equations, for example, are phenomenological - they are a condensed description of experimental results which make very little use of untestable abstractions - they are expressed in terms of measurements. The explanatory theories, like statistical mechanics, or quantum mechanics make use of untestable or unmeasureable abstractions like the microstate, or the wave function. I don't like to confuse the two, and I take the phenomenological theories as the bottom line, while the explanatory theories are not to be believed in a religious sense.

I also take issue with the idea that classical thermodynamic entropy is a specific application of Boltzmann (or information) entropy. Classical thermodynamic entropy is defined in terms of concrete macroscopic measurements, making no reference to microstates or probabilities or statistics. It does not speak the language of statistical mechanics, while statistical mechanics DOES speak the language of classical thermodynamics. Statistical mechanics explains thermodynamic entropy, but thermodynamic entropy is not an application of any statistical concept.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top